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Abstract

The ever growing demand of high data rates in mobile communication systems calls for
methods which allow to use the radio frequency spectrum as efficiently as possible. Fu-
ture mobile communication systems most likely will involve multiple-input multiple-output
(MIMO) techniques in combination with high order constellations, raising the amount of
transmitted data per channel usage in order to enhance spectral efficiency. However, due
to non-orthogonality of the transmission channel, this performance improvement comes at
the cost of increased computational complexity in the receiver. One of the main challenge
is the computationally intense task of MIMO detection use to separate the spatially mul-
tiplexed data streams.

Motivated by the tremendous gains in turbo channel decoder, the concept of iterative
processing has been recently extended to include iterations between MIMO detector and
channel decoder. Soft-In Soft-Out (SISO) detectors, when concatenated with a channel
decoder, can significantly improve the quality of wireless transmission by performing joint,
iterative data detection and channel decoding through the exchange of soft information.
However, soft information from channel decoder increases the search space and hereby
the computational complexity of the tree search in SISO detector. Furthermore, the com-
plexity of the optimal MAP detector grows exponentially with system dimensions. These
considerations motivate the design of complexity reduced suboptimal detectors for iterative
detection and decoding.

This thesis focuses on complexity reduction of the SISO detector at minimum performance
loss and to enable high throughput detection. Detection algorithms based on depth first
tree search enables MAP detection performance at reduced but still high complexity. This
thesis introduces a noval method for complexity reduction of depth first search detector.
Based on the analysis of the reliability information form channel decoder, predefinition of
the bits values is enabled. This allows to reduce the search space and thereby ease the
complexity of detector. In addition to this, parallel processing has been exploited in the
target detection algorithm to speed up the detection and increase throughput. In order to
evaluate the performance and complexity of hardware implementation, this thesis includes
VLSI implementation of the processor model for soft-out MIMO detection. Synthesis re-
sults show that it is possible to achieve a high throughput compared to state of the art
implementations with relatively small chip area. Final evaluation of the SISO detector is
performed in a case study on MIMO detection for 3GPP LTE system.



Kurzfassung

Der stetig wachsende Bedarf nach hohen Datenraten in mobilen Nachrichtensystemen er-
fordert eine zunehmend effiziente Nutzung des Ubertragungsspektrums. Zur Verbesserung
der spektralen Effizienz werden zukiinftige mobile Nachrichtensysteme voraussichtlich
Mehrantennentechniken (Multiple Input Multiple Output - MIMO Techniken) einbeziehen
um in Kombination mit hohen Konstellationsgroffen moglichst grofle Datenmengen pro
Kanalzugriff zu iibertragen. Aufgrund der Nicht-Orthogonalitiit der Ubertragungskanéle sind
zum Erreichen dieser Leistungssteigerung empfangsseitig jedoch rechenintensive Operationen
notwendig. Eine der mafigeblichen Herausforderungen hierbei ist die aufwandige MIMO De-
tektion zur Separierung der raumlich tiberlagerten Datenstrome.

Motiviert durch die enormen Gewinne von Turbo-Kanaldekodern wurden in letzter Zeit die
Konzepte iterativer (Turbo) Verarbeitung so erweitert, dass diese auch Iterationen zwischen
MIMO Detektoren und Kanaldecodern umfassen. Sogenannte Soft-In Soft-Out (SISO) Detek-
toren konnen hierbei in Verbindung mit geeigneten Kanaldecodern die Ubertragungsqualitét
signifikant verbessern. Ermoglicht wird dies durch eine gemeinsame, iterative Detektion
und Dekodierung und den Austausch von Zuverlassigkeitsinformationen (Soft-Werten). Ein
Nachteil dieser SISO Detektion ist jedoch, dass durch die Zuverlassigkeitsinformationen des
Kanaldekoders der Suchraum nachgelagerter Detektionen und somit der Rechenaufwand der
enthaltenen Baumsuche vergréflert wird. Des Weiteren steigt die Komplexitat des opti-
malen MAP Detektor exponentiell mit den Systemdimensionen. Abhilfe bietet die Entwick-
lung komplexitatsreduzierter suboptimaler Detektoren fiir die iterative Detektion und De-
codierung.

Fokus dieser Arbeit ist die Komplexitatsreduktion von SISO Detektoren bei minimalem
Genauigkeitsverlust zum Ermoglichen hoher Datenraten. Detektionsalgorithmen auf Basis
von Baumsuchen erreichen die Genauigkeit der MAP Detektion mit reduzierter jedoch immer
noch hoher Komplexitat. Zur weiteren Komplexitiatsreduktion wird im Rahmen dieser Ar-
beit ein neuer Ansatz fiir Detektionsalgorithmen der Tiefensuche vorgestellt. Aufbauend auf
einer Analyse der Zuverlassigkeitsinformation des Decoders ist es moglich einzelne Bitwerte
vor der Detektion festzulegen. Dies fithrt zu einer deutlichen Reduktion des Suchraumes
und somit zu einer Verringerung der Detektionskomplexitat. Eine weitere Steigerung des
Durchsatzes wurde durch eine Parallelisierung des gewahlten Detektionsalgorithmus. Zur
Bewertung der Leistungsfahigkeit und Komplexitat einer Hardwareimplementierung wurde
zudem eine VLSI Implementierung des zugrundeliegenden Soft-Output Prozessormodells er-
stellt. Die Ergebnisse der Synthese verdeutlichen, dass, verglichen mit herkommlichen Um-
setzungen, hohe Datenraten mit relativ kleiner Chip Flache erreicht werden konnen. FEine
abschliefende Bewertung des SISO Detektors wurde anhand einer Fallstudie fiir 3GPP LTE
Systeme durchgefiihrt.
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Chapter 1

Introduction

1.1 Motivation and Research Focus

To fulfil the demand for ever growing data rates, future mobile communication systems
will make use of multiple-input multiple-output (MIMO) techniques to enhance spectral
efficiency. If the propagation environment offers a sufficient amount of spatial diversity,
the spectral efficiency achievable with MIMO systems scales linearly with the minimum
of the number of transmit and receive antennas. However, this performance improvement
comes at the cost of increased computational complexity in the receiver. One of the main
challenge is the computationally intense task of MIMO detection use to separate the spa-
tially multiplexed data streams. Multiple antennas in a system introduce interference on
each other, making the allocation of received signal values to the most likely sent symbols a
complex task. Over the years, MIMO detection algorithms for spatially-multiplexed signals
have been thoroughly investigated. The optimal solution to detect spatially-multiplexed
signals relies on exhaustive search over a multi-dimension constellation set, whose size
grows exponentially with the number of antennas. However, the heavy computational bur-
den of such an optimal detection is impractical for implementation. The well-known sphere
detector (SD)[[Eah&T] effectively transforms the exhaustive search into a constrained tree
search with extensive pruning of irrelevant branches, and hence is regarded as a pragmatic
solution for the MIMO detection problem [Caildl].

Triggered by the tremendous gains in data rate provided by iterative processing of channel
codes, the concept of iterative processing has recently propagated further to include iter-
ations between MIMO detector and channel decoder. Soft-In Soft-Out (SISO) detectors,
when concatenated with a SISO channel decoder, can significantly improve the quality of
wireless transmission by performing joint, iterative data detection and channel decoding
through the exchange of soft information. However, the exponential complexity of the opti-
mal maximum a posterior probability detector rapidly becomes prohibitive. This motivates
the design of suboptimal SISO detectors whose complexities are scalable with system di-
mensions. Complexity reduced SISO MIMO detection algorithms, e.g. list sphere detector
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(LSD) [HEIBOZ], Single tree search (STS) [EBBOX| and Tuple search (TS) [MEEOY|, has
shown to be of high accuracy but also of high complexity, resulting from the complexity
of the underlying tree searches. In order to reduce this complexity, [HEBO3] proposed to
accomplish the iterations on a candidate list generated in the first iterations, leading to a
significant performance loss and high memory requirements [MEEOJ].

The focus of the work presented in this thesis is to reduce the complexity of the SISO
detector at minimum or even no performance loss and to enable high throughput. The
presence of a soft information in iterative detection<rdecoding increases the search space
and hereby the computational complexity of the tree search in SISO detector. In this
work it is shown how this complexity can be reduced by limiting the tree search to uncer-
tain bits i.e. bits with low soft information. In order to demonstrate the impact of this
concept on performance and complexity of a SISO detector, the TS algorithm [MvBET]|
together with complexity reduction techniques of Search Sequence Determination (SSD)
[MEQYE] and Metric Estimation (ME) [MenTd] is used. For hard-input, the complexity of
TS algorithm is greatly reduced by the geometrical approach of SSD. In case of iterative
detection<+decoding, the soft information from channel decoder destroys the geometrical
properties of constellation and as a result SSD leads to wrong sequence of nodes for tree
enumeration. The proposed concept of limiting the tree search to uncertain bits, besides
the intended reduction in complexity of the tree search, will also help to correct the enu-
meration sequence determined by SSD. To increase throughput of the SISO detection, this
work has introduced parallel processing in the TS algorithm. A case study on MIMO de-
tection in 3GPP Long Term Evolution (LTE) [BGPOH| is also a part of this work. The final
contribution of this work is the VLSI implementation of the Processor model for MIMO
detection.

1.2 Outline

Chapter 2 describes the used system model and basic considerations of the MIMO de-
tection. It also formulates the problem of MIMO detection addressed in this work.

Chapter 3 introduces a generic framework for tree search based detection. Sphere detec-
tion algorithm in the context of iterative detection and decoding is described. It is
followed by description of the algorithms related to this work. Several complexity
reduction techniques are also mentioned in this chapter.

Chapter 4 presents a noval method for reducing the complexity of MIMO detection in
joint iterative detection and decoding. The chapter starts by describing the pro-
posed method in detail. It then explains how the proposed method helps in finding
the search sequence for tree enumeration in SISO detection. Simulation results are
presented in the last part of the chapter.

Chapter 5 introduces parallel processing in TS algorithm to speed up the detection and
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hence increasing the throughput of the algorithm. The chapter first highlights the
problems of the T'S algorithm due to sequential node processing. It then describes the
methods of parallel processing in detail. Finally this chapter provides the simulation
results and efficiency analysis of the the resulting algorithm.

Chapter 6 is a case study on MIMO detection in 3GPP LTE system. Simulations results
of the several detection algorithms for different LTE channel models are provided in
this chapter.

Chapter 7 provides an overview of the processor model for TS algorithm. The chapter
also presents the synthesis results for VLSI implementation of the processor model
and its comparison to state of the art implementations.

Chapter 8 concludes the thesis with a summary of the main results and an outlook.



Chapter 2

Fundamentals

This chapter is a brief overview of the used system model, basic considerations of the
MIMO detection and formulation of the problem addressed in this work. The details of
development of the tree search methods and techniques that will enable the implementation
of efficient MIMO detectors are well known and are therefore referred to standard literature.

2.1 System Model

For comparability of the results with other publications and continuation of works in
[MenTd| and [Zim0d], a MIMO system model with a QAM (Quadrature Amplitude Modu-
lation) constellation is considered in this thesis. This system model, shown in Fig.2Z, will

serve as basis for the subsequent discussions to ensure that the results are applicable to
a wide range of communication scenarios and to provide a common base for the compar-
ison of different detection algorithms. The propagation environment between transmitter
and receiver is assumed to be non line of sight with sufficient scattering to provide large
number of independent transmission paths. Further, to enable low complexity equalization
at the receiver, a frequency non selective narrowband channel is considered in this work.
Since broadband channels can be reduced to narrowband channels with proper modulation
techniques such as Orthogonal Frequency Division Multiplexing (OFDM), MIMO detec-
tion techniques developed for transmission over narrowband channels can be reused for
broadband systems. The task of the detector here is enabling a transmission even with
a weak or noisy received signals close to the theoretical performance limit with highest
possible throughput. Many research works have been carried out for the design of hard
output MIMO detector. The performance of MIMO detector can be significantly improved
by iterative detection<+>decoding. However, its complexity limits the overall throughput.
Therefore, the work carried out in this thesis is focused on the development and analysis
of efficient MIMO detector for iterative detection<+decoding.

The system model under consideration is an Nt x Ng MIMO system based on a bit-
interleaved coded modulation (BICM) [CTBYS| transmission strategy with Nt transmit
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Figure 2.1: System model with BICM transmitter and iterative receiver.

and Ny receive antennas. A vector u of independent and identically distributed (i.i.d.) in-
formation bits is encoded by an outer channel code with rate R.. The coded vector v is bit-
interleaved and portioned into blocks ¢ of Nt-L bits, where L denotes the number of bits per
transmit symbol. For the transmission, the corresponding bits ¢ € C, covered in the set of
permitted bit vectors, are mapped (e.g. gray mapping) onto complex constellation symbols
x(c) = [zg, ...xnp_1])T = map(c) € X, the set of valid transmit symbols with cardinality
#X = #C = 2%, The transmit power is normalized such that £{xx"} = E, /Ntlyx,, with
E, being the average transmit power of x at the transmitter. On behalf of the transmission,
a flat fading channel and an additive white Gaussian noise (AWGN) vector n € CNrx1
with complex components of zero mean i.i.d. gaussian random variables is considered at
the receiver. The noise power density is Ny/2 per real dimension (€{nn"} = Nyly,,). The
considered passive channel is represented by H € CVt*Mr with entries of a zero mean
i.i.d. gaussian random process of variance 1 and is assumed to be perfectly known at the
receiver. The received signal y is therefore given by:

y=Hx+n (2.1)

with the following multidimensional Gaussian distribution of the complex received signal
(as given e.g. in [W0F]):
PR = e 22
(7 Ng) N '
The number of transmitted information bits per vector symbol is Np.L.R.. With the
average received energy per vector symbol given by E,.Ng, the signal-to-noise-ratio at the

receiver applied to the energy of one information bit, Ej, can be stated as:

B, 1 (Ex/N1)(NrNr)  ExNg 1
No Nr.L.R. Np ~ Ny Nr LR,
In order to ensure comparability of the results, a simulation setup equivalent to the one
used in e.g. [HIBO3, ZF0G| [MenTd| [Zim0d] is considered. The simulations are carried out
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for a rate 1/2 PCCC (Parallel Concatenated Convolutional Code, a so called Turbo Code
[BGTY3, HOPYE|) with two constituent convolutional encoders linked by an interleaver and

with (7g,5) ™ convolutional code polynomial. The length of an information block is 9216
bits (including tail bits). For the transmission, 64 QAM, Gray Mapping and a 4 x 4 MIMO
system (Ngp = Np = 4) was chosen. On the receiver the detection of the transmitted bits is
carried out by a complex valued SISO MIMO detector with and without detector<>decoder
iterations according to the turbo principle [Hag0Z3]. The vector €, which is an estimate of
the detected bits, is deinterleaved and passed to the channel decoder as a vector v. The
interleaver at the transmitter and receiver is a random interleaver and it interleaves over
the whole length of the codeword. The channel decoder used is a turbo decoder [BVHYH|
based on the BCJR algorithm [BGTY3| with 8 internal iterations. @ is a vector of the
estimated bits at the output of the channel decoder. Further details and analysis relevant
to the used system model can be found in [HEBOJ|, [Zim07] and [MenTd|.

2.2 MIMO Detection

The task of the MIMO detector in the described system model is to find an estimate X of
the transmitted signal vector x, given the received signal y according to equation . The
channel matrix H is assumed to be perfectly known and the noise vector n is unknown.
There are many approaches for the detection of the transmitted signal x. Some of the most
common approaches are mentioned in the following.

2.2.1 Maximum-Likelihood Detection

If we are not interested in soft output and no a priori knowledge from the decoder is
available, the transmitted signal can be detected by maximum likelihood (ML) detection

[E7H|:
M = argmi)rcl{P(X|y)} (2.3)
X€e
. . . ~ 112
= argmin {|ly — H&["} (24)

A straight forward approach to solve equation (E4) is an exhaustive search over the entire
set of possible vector symbols x € X to find x™*. It provides an optimum detection perfor-
mance by minimizing bit error rate (BER). Unfortunately the computational complexity
is NP hard as it increases exponentially with number of transmit antennas Ny and QAM
constellation size.

2.2.2 Linear Detection

Linear detectors are attractive whenever some performance degradation can be accepted
in order to achieve very low receiver complexity. The linear detector applies a linear filter

'The subscript R indicates the recursive or feedback generator polynomial.
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matrix to the received signal to compensate the effect of the channel [WEGVYS]:
x = Gy = GHx + Gn = GHx + n.

Where G € CNrXNT g g linear filter and 10 is the the resulting noise vector. There are two
types of linear detectors.

Zero Forcing (ZF)

The ZF linear detector finds an estimate of the transmitted signal x by solving equation

(200) regardless of the noise:
x = Gzry

Where Gz is a linear filter matrix obtained by taking Pseudo-Inverse [SBID| of the channel
matrix as follows

Gy = (H'H) ' H"
Despite its simplicity, this approach suffers from the noise enhancement problem [Zim{Iq.
Minimum Mean Squared Error (MMSE)

In MMSE detection the influence of receiver noise is considered in the design of filter matrix
to overcome the noise enhancement problem of ZF detection. In this case the matrix filter

is defined as
Guuse = (H'H — oIy, ) 'HY.

With uniform distribution of transmit power per antenna Ey /Nt and noise power Ny, the

o? for MMSE detection is given by

2 _ Ny _ NtNy
EX/NT Ex

g

(2.5)

2.3 Iterative Detection and Decoding

For the used system model with coded transmission, it is suboptimal for the MIMO detec-
tor and channel decoder to operate separately and only on individual vectors of the received
signal. Optimal system performance is achieved only if the detector makes decisions jointly
on all the vectors using a priori information provided by the channel decoder and the chan-
nel decoder makes decisions using likelihood information on all the vectors obtained from
the MIMO detector. Therefore, the application of the Turbo principle [HOPYE| for iterative
detection<+decoding is considered. As shown in Fig. EZ the receiver consists of the serial
concatenation of an inner MIMO detector and an outer channel decoder. Both modules
accept and generate soft information on the bits of the transmitted codeword c. The de-
tector exploits its knowledge of the received signal, the channel state information and the
a priori information L,(€) provided by the decoder to generate the a posteriori information
L(¢). The extrinsic information L(€), obtained by subtracting a priori information L, (&)
from a posteriori information L(€), is deinterleaved to become the a priori input L,(V)
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to the channel decoder. The channel decoder calculates the a posteriori information L(i)
on the outer coded bits using BCJR algorithm [BGTY3|. The extrinsic information L.(¥)
is then interleaved and passed on as a priori knowledge L,(€) to the inner detector, thus
completing an iteration. Conventionally used Log-Likelihood Ratios (L-values) provide
a convenient notation to describe the soft-output in iterative detection<+decoding. The

(2.6)

L-value of the bit ¢,,; is defined as follow

L (¢, =1
(C ,Z|Y) n (P(ém,l _ _1|Y)

As shown in Fig. B, each processing module in iterative detection<+decoding deals with
three different types of information: the a priori information received from the other mod-
ule, the a posteriori information generated by this module, and the extrinsic information
sent back to the other module. The L-values of the a priori, a posteriori and extrinsic
information on a bit ¢é,,; are indicated by L, (¢pi), L (¢mily) and Le (émy]y) respectively.
Their relation can be expressed as

P(¢,, = +1 P(¢,, =+1 Cmt = +1
n (f i=+y) _ In (f 1 =+1) 4 1np(Y|f 1=+l
o P(Cm,l = _1|Y)J N P(Cm,l = _1)1 . p(Y|Cm,l = _1)
A-Posterior;,Information A-Priori I‘I:formation Extrinsic f;formation

L (ém,l|y> = La (ém,l) + Le (ém,l’y)

The following subsections give an overview of the basic approaches to calculate the a
posteriori L-values of the MIMO detector.

2.3.1 A Posteriori Probability Detection

The a posteriori L-values at the output of the MIMO detector can be calculated by com-
monly known form of equation (E8):

> exp (-NLOH.Y —Hx|*+3 > &;(x)La (%‘))

xeXTj;ll i,j;ém,l
L (émaly) = La (émg) + In—= .27
>oexp | —xlly —HR[2+ 3 X &%) La(Giy)
XGX,,;}l i»j;'émvl

Where ¢,,; = =1 represents the [-th bit of the symbol sent by the m-th antenna. The
derivation of equation (E4) from equation (E8) is detailed in Appendix Bl The optimal
detection strategy is to evaluate equation (24) by a brute-force approach and is referred
as A Posteriori Probability (APP) detection.

2.3.2 MaxLogAPP Detection

The computational effort in the APP detection can be greatly reduced by using the Jaco-
bian logarithm [BVHYH| and applying the so called max-log-approximation (MaxLogAPP).
The a posteriori L-values become
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1
L (¢, ~ —— min { N} +-— min {\o}, 2.8
(enly) =~ min Db+ i () 28)
A Net L
NN 0 ~ ~
Ao = |ly — HX(&)|* — 5 Y0 eiLalé), (2.9)
=0 j=1

where Ay represents the distance metric for a vector of received symbols y, a given
¢ and the a priori knowledge L,. X corresponds to a possible transmission symbol.

As a consequence, beside the most properly sent symbol argmin{\g} - the detection
%(&)|eec
hypothesis - and its corresponding metric A\o(éML), the detector has to determine also

the counter-hypotheses  argmin  {Ag} with their metrics for each bit.
%(8) €€,y 1 2T

Derivation of equations ¥ and 9 can found in Appendix Al

2.3.3 Tree Search Based MIMO Detection

The basic aim of calculating the L-values in equation (ER) is to determine the most likely

sent symbols x(c), with ¢ = arg ‘ mini {Ao}. A common approach to simplify the de-
&l =1

tection of these symbols is to transform the detection problem into a tree search problem
using QR decomposition of the channel matrix H as described in section Bl. An appro-
priate tree search methodology determines the most likely sent symbols without analyzing
all possible sent symbols. It is this property of the tree search methods which makes them
interesting for implementation of an efficient MIMO detection and forms the basis of this
work. A detailed description of tree search based MIMO detection is given in the following
chapters.

2.3.4 Successive Interference Cancellation

Successive interference cancellation (SIC) [Zimld] is a simple approach to find the symbols
for equation (Z3) with minimum computational effort. In this case detection takes place
successively layer by layer estimating the transmitted symbols sequentially. The interfer-
ence from already detected layers is removed from the received signal before detecting the
next layer. This continues until all symbols %5¢ have been detected. There are a num-
ber of different approaches for the implementation of the SIC detection. As part of this
work, it is included as a reference for tree search based detection and is therefore realized
with similar processing steps as the tree search. Further details can be found in standard
literature.

2.4 Conclusion

In this chapter an overview of the used system model and MIMO detection methods to-
gether with their performance and complexity is provided. For ML detection the com-
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plexity grows exponentially with the number of transmit antennas and even for flat fading
channels it is prohibitively complex at higher modulation order. On the other hand, low
complexity linear detectors are less robust and suffer from noise enhancement. Iterative
detection<+decoding offers the best complexity-performance tradeoff and is therefore used
for MIMO detection in this work. The complexity of calculating soft-output in iterative
detection<+decoding can be greatly reduced using MaxLogAPP.



