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Abstract

The optimization process of communication systems having an iterative structure

somewhere within the transmission, in the particular case studied, it is in the re-
ceiver, is a delicate process. The main intention is to match the behavioral pecu-

liarities of individual components in order to achieve a performance gain through
their interaction. However, the component-wise optimization with regard to each
other mostly pays off when specific prerequisites, which often lead to trade-offs (if

the system has to work for various conditions), are met. Hence, system designers
are interested in methods that can enable a straight-forward match while covering
a broader set of environments.

With the (recent) rise of the so-called Low-Density Parity-Check codes (LDPCC),
a very powerful kind of forward error correction codes has entered almost every

recent wireless communication standard. Though these codes have widely known
benefits, the researcher’s desire for improvement (e. g., reducing gap to capacity,
reducing complexity) is without limits. This eventually leads to the application of

paradigms, which were previously established for other codes, to LDPCC and the
introduction of LDPC Convolutional Codes (LDPCCC).

This thesis tries to tackle the issue of straight-forward matching of a decoder to
an equalizer, in a so-called turbo receiver, by the utilization of a particular type
of LDPCCC. This kind of code is derived from well-studied structural templates of

block code variants, named protographs, through a multi-step derivation process.
The steps involved are studied with respect to parameters affecting the code and

its performance. As a first step, the basic protograph is unwrapped to a compo-
sition graph that reflects the structural distinctiveness of convolutional codes of
band parity-check matrix. Here, the syndrome former memory and the termina-

tion length are the tunable variables that have behaviors that partially counteracts.
Then, an adaptation of the code to the equalizer is feasible, but only within certain

limits. The extrinsic information gained for small to medium amounts of a-priori
information can be raised by increasing the syndrome former memory, due to the

xiii



introduction of lower degree nodes that can provide higher reliability. In turn,
the enlargement of the composition graph lowers this by installing higher degree
nodes between the lower degree nodes at the ends of the graph. Technically speak-

ing, the termination length of the composition graph, which is referred to as the
Terminated Convolutional Protograph, increases. However, they help reduce the

rate loss induced by the addition of low degree nodes. A recommendation of the
parameter set preferred depends on the operating point suggested.
In the next step, the TCPG is lifted to the final code (that are named Protograph-

based Low-Density Parity-Check Convolutional (PG-LDPCC) codes), where the
nodes are duplicated and the edges are permuted. Here, the size of these permuta-

tions is important since it, along with the other two variables mentioned before as
well, is related to the final block size. Eventually, the system designer has a set of
conditions to be satisfied along with and a set of tools for creating codes spanning

a design space and has to choose from it. For such a code design challenge, ensem-
ble maps are introduced in order to provide the overview tool at hand.
Furthermore, the opportunity to adapt to certain prerequisites is extended to the

study of puncturing methods for the special case of PG-LDPCCCs. Since the deriva-
tion process is multi-tiered, puncturing can be applied to different code represen-

tations at each stage. In light of this multi-tiered challenge, the error probability
distribution over the graph is examined, in particular its fixed point behavior. A
modification of extrinsic transfer curve is also feasible by puncturing, but the influ-

ence of the puncturing scheme on the transfer curve is also very limited.

xiv



Zusammenfassung

Die Optimierung von Kommunikationssystemen mit rückgekoppelten Funktions-

einheiten ist eine komplexe Herausforderung. Die Hauptaufgabe dabei ist es, die
besonderen Eigenheiten der Komponenten so aufeinander abzustimmen, dass sie

bei ihrer Interaktion einen Leistungsgewinn des Gesamtsystems erzielen. Aber, in
den meisten Fällen ist eine derartige Optimierung davon geprägt, dass diese nur
für bestimmte Rahmenbedingungen optimal ist, was letztendlich zu Abwägungen

führt, falls die Komponenten auch unter verschiedenen Bedingungen arbeiten sol-
len. Aus diesem Grund sind Systemdesigner sehr interessiert an Möglichkeiten,
um diese Abstimmung auf einfache Weise durchzuführen und damit eine größere

Bandbreite an Randbedingungen abzudecken.
Obwohl Low-Density Parity Check codes (LDPCC) sehr leistungsfähige Vorwärts-

fehlerkorrekturverfahren sind und mittlerweile eine so große Verbreitung gefun-
den haben, dass sie Teil fast jeden neuen Kommunikationsstandards sind, wurde
und wird nach weiteren Verbesserungsmöglichkeiten geforscht. Eine Option der

Fortentwicklung nutzt die Anwendung bereits bekannter Paradigma auf diese Art
der Fehlerkorrektur was zu den sogenannten LDPC Convolutional Codes (LDPCCC)

führte.
In der vorliegenden Arbeit wird das Problem eines iterativen Empfängers ange-
gangen, der einen Dekoder unter Benutzung von Low-Density Parity-Check Convo-

lutional Code (LDPCCC) auf einfache Art und Weise an einen Entzerrer anpasst.
Da beide Komponenten auf Empfängerseite iterativ rückgekoppelt zu finden sind,

wird dies auch als Turbo Empfänger bezeichnet. Dabei werden die verwendeten Co-
des von gut untersuchten strukturellen Vorlagen, genannt Protographen, in einem
mehrstufigen Verfahren abgeleitet und die einzelen Schritte werden hinsichtlich

der zur Verfügung stehenden Parameter und der daraus resultierenden Leistungs-
fähigkeit untersucht. Im ersten Schritt, wird der Ausgangsgraph vervielfacht und

neu neusortiert zu einer Anordnung, welche die Faltungsstruktur der Paritätsmatrix
verdeutlicht. In diesem Schritt sind die syndrombeeinflussende Gedächtnislänge

xv



und die Terminierungslänge von großer Bedeutung und zeigen teilweise entgegen-
arbeitende Verhaltensweisen. An dieser Stelle ist eine Anpassung zum Entzerrer
möglich, jedoch nur begrenzt. Die extrinsische Information, die mittels kleiner bis

mittlerer a-priori Information gewonnen werden kann, vergrößert sich mit steigen-
der syndrombeeinflussender Gedächtnislänge durch die Einführung von niedrigen

Knotengraden, die eine höhere Zuverlässigkeit bereitstellen können. Im Gegensatz
dazu wird dieser Gewinn durch Vergrößerung des Graphen, der Terminierter Fal-
tungsprotograph (TFPG) genannt wird, durch eine steigende Terminierungslänge,

mit der höhergradige Knoten zwischen den Enden eingeführt wird, reduziert. Al-
lerdings wird damit auch der Ratenverlust veringert, der durch die niedrigen Kno-

tengrade induziert wird. Eine generelle Empfehlung ist daher nicht möglich und
hängt vom Arbeitspunkt ab.
In einem nächsten Schritt wird der TFPG zum finalen Kode erhoben, wobei wieder-

um Knoten dupliziert und Kanten permutiert werden. Hierbei spielt die Permuta-
tionsgröße eine entscheidende Rolle, da diese, genauso wie die bereits erwähnten
Parameter, die letztendliche Blockgröße beeinflussen. Schlussendlich muss der Sys-

tem Designer die gegebenen Rahmenbedingungen auf den Designraum der Codes
abbilden und aus diesem wählen, oder durch einen Algorithmus für unterschied-

liche Bedingungen wählen lassen. Zu diesem Zweck werden dem Designer soge-
nannte Code Ensemble Maps an die Hand gegeben.
Zudem wird die Möglichkeit der Punktierung von PG-LDPCCC untersucht um die-

se für spezifische Randbedinungen anzupassen. Diese Punkturierung kann dabei
auf unterschiedlichen Ebenen des Herleitungsprozesses angewendet werden. Zu

diesem Zweck werden Fehlerverteilungen über den Graphen hinweg, im Speziel-
len sein sogenanntes Fixpunktverhalten, untersucht. Auch hier ist eine Anpassung
der extrinsischen Transferkurve möglich, aber auch diese besitzt nur eine einge-

schränkter Wirkung.
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1 Introduction

1.1 Motivation

Even though digital communication systems have changed dramatically over the

last 30 years, Forward Error Correction (FEC) coding is an integral part of these sys-
tems since the beginning. Driven by Shannon’s coding theorem stating that there
exists a code having a rate below the capacity and allowing error-free transmis-

sion over a noisy channel, researcher have been looking for these codes ever since.
Notwithstanding that Gallager proposed a kind of low complexity codes having

very good error correction capabilities, algebraic and Convolutional Codes (CC)
have been the preferred choice for communications systems for many years due
to their more straight-forward implementations. Only when Turbo Codes (TCs),

cf. [BG96], were invented and Gallager’s codes were rediscovered1 was the limit
proposed by Shannon, i. e., the channel capacity, within the grasp of researchers.

Since then these codes have been studied extensively, they are very well under-
stood, and hence, are included in every modern communication standard pro-
posed.

Understanding that both codes, TCs and codes known as Low-Density Parity-Check
(LDPC) codes nowadays, rely on the same basic principle led to a different per-

spective on the interplay of components of a communication system. The basic
idea is that an iterative exchange of extrinsic information by two (or more) com-
ponents improves the performance of a certain task. Based on this shifted point of

view, the so-called Turbo Principle (TP) is applied to various systems, e. g., turbo
receiver, turbo equalizer, or blind estimators, to name just a few. A lot of work

was done in the field of information theory in order to understand how this ex-
change of reliability information works, and finally, there were tools proposed to
measure and quantify this information, and even visualize and study the exchange

1There were papers on Gallager’s codes in the meantime, but the time was not ripe, before the
computational power available reached a certain level.



1.2 THESIS OUTLINE AND CONTRIBUTIONS

itself (e. g., Extrinsic Information Transfer (EXIT) charts, cf. §2.5.1). Having these
tools at hand, they were used to improve the interplay between the components
by adapting them with respect to each other and/or for certain surrounding situa-

tions, e. g., generator polynomials of CCs in TC, degree distributions of variable and
check node components of LDPC decoder, mapping rules for interplay of mapper

and decoder under certain channels, etc. However, with the rising success of LDPC
codes, some inevitable drawbacks also garnered attention and the idea of applying
the main concepts of other well known codes to LDPC codes have been studied,

and so-called Low-Density Parity-Check Convolutional (LDPCC) codes were intro-
duced in [JZ98]. In recent years, a lot of research has been carried out related

to threshold analysis [LTZC10], distance properties ( [STL+07], [MPZC08]), de-
coder adaptations ( [uHPL+12], [HPL+13]), and the basic understanding of the
information theoretical relation between the Maximum a Posteriori (MAP) and

the Belief Propagation (BP) thresholds of block and convolutional LDPC variants
( [LSCZ10], [KRU11], [STS12]).

1.2 Thesis Outline and Contributions

This thesis deals with a particular variant of LDPCC codes, and to be more pre-
cise, with LDPCC code ensembles based on so-called Protographs (PGs). The fo-
cus of this study lies on the possibility of adapting these kinds of codes in order

for them to work well in turbo receiver systems, and in turbo equalization sys-
tems2, in particular. For this reason, a close look at the parameters involved in

the derivation of LDPCC codes is necessary. In particular, the adjustable variables
that influence the derivation from a specific well-known PG. The choice taken here
is to choose the Accumulate-Repeat-Jagged-Accumulate (ARJA)-PG ( [DJDT05],

[DDJA09]) for the reason of its widespread acceptance. Additionally, this PG has
been studied for some time (first by extensive search, later through correspon-

dences to known modules) by the authors of the papers mentioned before. While
at first the parameters on the PG level from the block code variant to the convolu-
tional variant are examined, the derivation process from the ensemble description

to a real code is considered at a later stage.

2In general, the other component, the decoder interplays with, is not important for the study
itself, since the main focus is on the adaptability of these codes, but it is important for the
results evaluated.
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1.2 THESIS OUTLINE AND CONTRIBUTIONS

Analysis in the previous step can be undertaken by means of tools already in
use for the original PG on a higher level, omitting time consuming Monte-Carlo-
Simulations, and can be used to predict the error correction performance expected.

The latter step is necessary in order to provide recommendations for codes to be
chosen based on certain circumstances. Thus, a trade-off , that helps a decision

maker choose, is worked out.
At the end, it is examined whether it is possible to improve the performance of
codes with the help of puncturing. For this purpose, the distribution of error

probabilities throughout the PG are studied, and certain modifications are also
attempted.

Although a specific system model with particular channels and a particular turbo
equalizer is assumed, the results from this study can be considered as generally
valid and are applicable to a wide spectrum of applications, where the only require-

ment is a turbo receiver structure. This work is the first study on the adaptation
of LDPCC codes for iterative receiver structures by means of variation of convolu-
tional protograph and LDPCC derivation parameters. Therefore, the steps of the

derivation process are identified - starting from the well-known protographs, which
are used mainly for the derivation of LDPC block codes, to the final LDPCC code.

In each step the main parameters involved are studied. Furthermore, puncturing
can be introduced on several occasions. The overall contributions to the scien-
tific discourse are summarized in Fig. 1.1, where blue boxes represent the starting

point, green boxes illustrate the parameters studied w. r. t. their influence on curve
shaping and performance, and the orange box reflects a benchmark necessary for

the evaluation of the findings, which is open for further research.
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1.2 THESIS OUTLINE AND CONTRIBUTIONS

pre-defined

Studied in thesis

Performance measure

Structured vs. Unstructured

Choice of Structure (Protograph [ARJA])

Protograph Puncturing

Protograph Parameter

Degree Of Coupling
(Syndrome Former Memory)

Length Of Coupling
(Termination Length)

Puncturing of Terminated Convolutional Protograph

Code Construction
(Lifting Factor/Permutation Size)

Puncturing of Blocks

Figure 1.1: Contributions
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2 Fundamentals

Communications systems, in general, have to deal with many challenges in order
to fulfill their purpose of transmitting data from a transmitter to a receiver in a re-
liable manner. System designers do not only have to deal with its implementation,

but with the theory behind it as well. Starting with the overall system model and
highlighting some of its elements, this chapter continues with the main aspects of
channel coding and Low-Density Parity-Check codes in particular. Subsequently, a

known construction method, called a Protograph, which leads to structured LDPC
codes is explained. Finally, the shift from the block code variant to its convolutional

variant is shown and explained in detail.

2.1 System Model

The following section will introduce the communication system considered in this

thesis. In general, the current work is a continuation of the work in [dS10]. Al-
though the focus of dos Santos’ thesis diverges from that of this thesis, the system

model remains the same except for components used for blind channel estimation.
The basic components on transmitter and receiver side are illustrated and impor-
tant aspects of particular modules are explained in more detail later on. Addition-

ally, the special role of the channel assumed is highlighted.

2.1.1 Transmission Chain

Encoder Interleaver Modulator
QAM Cyclic

Prefix
CIR

w

Channel

d v s tx r
+

Figure 2.1: Transmitter chain



2.1 SYSTEM MODEL

The transmission is carried out in a single carrier fashion with a single antenna
on the transmitter side and a single antenna on the receiver side. In Fig. 2.1, the
transmission chain including the channel is illustrated. In the first step, a binary

information word d of length K is encoded by means of a forward error correction
code resulting in the code word v of length N . Then, the interleaver permutes

the positions of the code word vector in order to ensure independence of the bits1.
This interleaved code word is then modulated to the symbol vector s of length
B = N

Q
with 2Q-Quadrature Amplitude Modulation (QAM)-symbols, where Q is

the number of bits per symbol. The actual mapping procedure is explained in
greater detail in §2.1.1. Subsequently, a cyclic prefix is prepended in order to use

equalization in frequency domain (cf. §2.1.3). Eventually, this transmit vector is
transmitted through the channel.
In general, a block-fading multipath channel is assumed with its Channel Impulse

Response (CIR) given by h =
[
h(0 ) h(1 ) . . . h(l) . . . h(T − 1 )

]
. In this context,

block-fading means that the CIR does not change during the transmission of one
symbol block. Additionally, white Gaussian noise samples w ∈ CN with variance

σ2
w are added to the symbol vector. The received samples r(i) at time i are given as

r(i) =
T −1∑

l=0
h(l)t(i − l) + w(i) . (2.1)

Mapping

A mapping method different from Gray mapping is considered, since it is shown,
e. g., in [tBS98], that Gray mapping is not optimal for use in turbo equalization.

The mapping procedure of choice is accomplished by means of a linear mapping
procedure as introduced in [KM03] and is briefly described as follows.

1This step is not absolutely necessary for LDPC block codes since connections between different
bits in a code word are spread over the whole block. However, in the case of convolutional codes
where bits depend on the state of the encoder and the incoming bits, this step is necessary. Since
this study deals with convolutional codes for the sake of comparison and considering LDPCC as
the objective, it is included in the transmission chain for block codes as well.
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2.1 SYSTEM MODEL

I

Q

�� ��

1 0

(a) ±z0

I

Q

��

��

1

0

(b) ±z1

I

Q

��

��

��

��

11

10

01

00

u/2-u/2

ju/2

-ju/2

u-u

ju

-ju

(c) ±z0 + ±z1

I

Q

�� ��

1 0

(d) ±z2

I

Q

��

��

1

0

(e) ±z3

I

Q

��

��

��

��

11

10

01

00

u/2-u/2

ju/2

-ju/2

(f) ±z2 + ±z3

I

Q

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

1111

1110

1011

1010

0101

0100

0001

0000

1101

1100

1001

1000

0111

0110

0011

0010

u/2-u/2

ju/2

-ju/2

u-u

ju

-ju

3u/2-3u/2

j3u/2

-j3u/2

��

��

��

��

(g) ±z0 + ±z1 + ±z2 + ±z3

Figure 2.2: Illustration of Mapping Function Elements

The mapping procedure is carried out in two steps using linear function:

1. Map the interleaved binary code word vector x onto an interleaved antipodal
coded code vector ẍ = [ẍ0, .., ẍn, ..ẍN−1]T using

ẍ = 1 − 2x , (2.2)

where 1 is the all-one vector of length N .

2. Map the antipodal vector ẍ onto the symbol vector s = [s0, .., sb, ..sB−1]T with
zq ∈ S (mapping alphabet S) using

sb = zT ẍb , (2.3)

where ẍb =
[
ẍbQ, .., ẍ(b+1)Q−1

]T
and the elements of the linear weighting vec-
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2.1 SYSTEM MODEL

tor z =
[
z0, .., zq, .., zQ−1

]
of length Q are given by

zq =

⎧
⎪⎪⎨
⎪⎪⎩

2Q−q−4
2 u , if q is even

j2Q−q−3
2 u , if q is odd

. (2.4)

The normalization factor u is chosen such that zT z = 1.

2.1.2 Channel

Although the channel is included in Fig. 2.1, a separate section is needed to ad-
dress this issue for the reasons that follows. When the author’s work on this topic
started, the construction of channel codes in the turbo equalization process for

UWB-channels was the main focus. The extremely wide bandwidth needs a high
sampling rate and, therefore, has a high resolution in time in order to capture the

energy of the signal, which would otherwise be treated as noise. Hence, higher
resolution in time enables multiple paths of the signal, from the transmitter to the
receiver, to be distinguished. Especially in the case of a UWB channel, a significant

part of the energy, relative to the sampling rate, might be received very late.
An example of a typical UWB-NLOS-channel, as defined in [IEE07]2, is used through-

out the thesis. The PDP is illustrated in Fig. 2.3. This channel has around three

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

l

|h
(l

)|2

Figure 2.3: PDP of UWB-NLOS channel

hundred taps that must be considered, whereas only a few carry the energy of the

2This channel is chosen, because the starting point for the study is based on a German Science
Foundation project studying UWB.
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2.1 SYSTEM MODEL
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Figure 2.4: 10 tap exponential channel

signal transmitted, which yields to a relatively flat channel and low Intersymbol In-

terference (ISI). It is a very typical example of a UWB channel, and hence, for the
study of code matching to the channel it makes sense to examine another channel.

The counter example regarding the ISI properties must be considered, which is a
10 tap exponentially decaying PDP channel, cf. Fig. 2.4, given by

h(l) = exp
(

− l + 1
10

)
, l = 0, .., 9 . (2.5)

The influence of ISI on the process of code matching can be seen in an EXIT-Chart
in more detail and will be explained in Example 2.19.

2.1.3 Receiver Chain

Compared to the straightforward transmitter chain, most of the signal processing is
done at the receiver side. In general, there are two components, the soft equalizer
and the soft-decoder, interacting with each other. The system will be explained by
means of the signal flow through the receiver. Subcomponents are explained in
greater detail after a general overview with the aid of Fig. 2.5.

At first, the distorted signal r is received by the soft equalizer, where it is equalized
by means of the statistical knowledge of the channel (cf. PDP in §2.1.2), i. e., the

PDP is known to the receiver. The received signal incorporates the overlap of mul-
tiple paths, which leads to the well-known Intersymbol Interference effect. Based

9



2.1 SYSTEM MODEL

on the symbols equalized and the mapping applied, a vector containing the extrin-
sic Log Likelihood Ratio (LLR)-values of the interleaved bits LE

e (x̂) is determined.
Subsequently, this vector is deinterleaved and used as a-priori LLR-values LD

a (v̂)
for the decoder. The decoder3 computes the a-posteriori LLR-values of the informa-
tion word estimates LD

p

(
d̂
)
. These can be used to determine the information word

estimated utilizing the mapping L (y) ∈ R �→ {0, 1}. In a non-iterative system, this
would be the last step and there would be an error if the estimate does not match
the information word transmitted.

Iterative detection decoding (turbo equalization) has been proposed in [DJB+95]
in order to improve the detection performance. For this, a matching of the EXIT-

chart curves shall be carried out, which leads to the main topic of this thesis: How
can LDPCC codes be engineered in a straight-forward way to generate an opti-
mized/matched EXIT chart curve?

In a turbo receiver, the extrinsic LLR-values of the code word LD
e (v̂), which are fed

back to the soft-equalizer (after interleaving) as a priori information LE
a (x̂), are

computed as well. The soft equalizer can then, in the next iteration, utilize the

symbol vector received, the statistical knowledge of the channel, and the a-priori
information of the code word to improve the estimate of the code word transmit-

ted, and the decoding process starts all over again. This iterative process can be
repeated several times until a certain stopping criteria is satisfied. It is reasonable
to define a maximum number of iterations, but allowing it to stop earlier if the

information word is decoded correctly.

Equalizer Soft
Demapper

Soft
Mapper

Soft-
Equalizer

De-
interleaver

Interleaver

Decoder

r
LE

e(x)

LE
a(x)

LD
a(v)

LD
e(v)

LD
p(d)

LD
p(v)

-

d̂

ŝ
+

Figure 2.5: Receiver chain

3Various decoders are feasible as long as they are recognized as Soft-Input Soft-Output (SISO)-
decoders, i. e., the decoder has to accept a vector of LLR-values as input and has to yield a
vector of LLR-values, e. g., an LDPC decoder or a decoder implementing the BCJR algorithm.
These values can be regarded either as a-posteriori or extrinsic values, since there is a distinct
relationship between a-priori, a-posteriori and extrinsic values, which are explained later.
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2.1 SYSTEM MODEL

Soft Equalizer

The soft equalizer consists of three components that work together, (1) the equal-
izer, (2) a soft demapper, and (3) a soft mapper. The latter is explained first, since

the output of the soft mapper is used for the calculations of the equalizer in each
iteration, except for the first one.
In general, the soft mapper tries to calculate the soft symbols ŝb and their variances

Var [sb], which can be defined as

ŝb = E [sb] =
∑

ζi∈S
ζi P (sb = ζi) (2.6)

Var [sb] =
∑

ζi∈S
|ζi − ŝb|2 P (sb = ζi) , (2.7)

where ζi are the symbols from the constellation set S. This calculation is based on

the a-priori information of the equalizer coming from the channel decoder, since
it is the only source of information available. Therefore, as a first step, the so-

called ‘soft bits’ (and their variances) based on the a priori LLR values LE
a (x) (cf.

[KST04,OT02,TSK02]) calculated as

̂̈xn = tanh
(

LE
a (xn)

2

)
(2.8)

Var [ẍn] = 1 −
∣∣∣̂̈xn

∣∣∣
2

. (2.9)

Remark 2.1 (Interchangeable use of L (ẍn) and L (xn)). In Eq. 2.8, LE
a (xn) is used

instead of LE
a (ẍn) to define the calculation of the soft bits. This is interchangeable

since there is a linear relationship between ẍ and x. However, it is necessary to

distinguish them previously in order to write the equations in a more compact
form.

Then, the soft symbols and their variances can be determined using the linear
weighting vector from Eq. 2.4 and the soft bits by

ŝb = E [sb] = E
⎡
⎣

Q−1∑

q=0
zqẍbQ+q

⎤
⎦ =

Q−1∑

q=0
zq E

[
ẍbQ+q

]
(2.10)

=
Q−1∑

q=0
zq
̂̈xbQ+q (2.11)

11



2.1 SYSTEM MODEL

and

Var [sb] = Var
⎡
⎣

Q−1∑

q=0
zqẍbQ+q

⎤
⎦ =

Q−1∑

q=0
z2

q Var
[
ẍbQ+q

]
(2.12)

=
Q−1∑

q=0
z2

q Var
[
ẍbQ+q

]
. (2.13)

The equalized symbol vector e can be obtained by

e = (1 + ω�̄)−1
[
�̄ŝ + FHΨF

(
r − Ĥŝ

)]
, (2.14)

where Ĥ is the circular convolution matrix using an estimated CIR and F ∈ CB×B

is the Fourier matrix and

Ψ = ΞH(ΞΛaΞH + σ2
wI)−1 , (2.15)

�̄ = 1
B

tr (ΨΞ) , (2.16)

ω = 1
B

B−1∑

b=0
E
[
|ŝb|2

]
. (2.17)

where Ξ and Λa are the diagonal matrices containing the Fourier transform of the
estimated CIR vector and the variances of the soft symbols (cf. Eq. 2.8), respec-

tively.
It is shown in [KM07] that the equalized symbol en is approximately a Gaussian

random variable4 en ∼ N
(
μeb

, σ2
eb

)
, where its mean and variance can be deter-

mined by

μeb
= �̄ (1 + ω�̄)−1 (2.18)

σ2
eb

= μen

(
1 − μeb

)
. (2.19)

The equalizer’s extrinsic information can be calculated with help of utilizing the

4The assumption of a Gaussian distributed random variable is necessary for the validity of the use
of EXIT charts (cf. §2.5.1).
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2.1 SYSTEM MODEL

equalized symbols by the max-log-map algorithm shown in [tBS98]:

LE
e (xn) = max

ẍ′
b∈Sxn=+1

⎧
⎪⎨
⎪⎩

1
σ2

eb

∣∣∣eb − μeb

∣∣∣
2

+ 1
2

(b+1)Q−1∑

i=bQ,i�=n

ẍ′LE
e

(
ẍ′
)
⎫
⎪⎬
⎪⎭

− . . .

. . . max
ẍ′

b∈Sxn=−1

⎧
⎪⎨
⎪⎩

1
σ2

eb

∣∣∣eb − μeb

∣∣∣
2

+ 1
2

(b+1)Q−1∑

i=bQ,i�=n

ẍ′LE
e

(
ẍ′
)
⎫
⎪⎬
⎪⎭

,(2.20)

where ẍ′
b ∈ Sxn=+1 and ẍ′

b ∈ Sxn=−1 are the bit representations of the corresponding
symbols in S wherein xn = +1 and xn = −1, respectively.
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2.2 LOW-DENSITY PARITY-CHECK CODE BASICS

2.2 Low-Density Parity-Check Code Basics

Although LDPC codes were already defined by Gallager [Gal62] in the early 1960s,
and a few papers were published, they did not enter the limelight until the 1990s,

when their performance being close to the Shannon limit was brought to the pub-
lic’s attention [MN97]. Nowadays, they are very well known by the scientific com-
munity and are a part of almost all recent standards. In light of the community’s

familiarity with LDPC codes, this section is rather short and concentrates on the
basic definitions necessary for further explanations of concepts in this thesis.

Definition 2.2 (Low-Density Parity-Check code). An LDPC code is a linear block
code C of length N , dimension K and rate R = K

N
that can be described by a parity-

check matrix H of dimension (M × N) with linearly independent rows, where M =
N − K, and the number of non-zero elements in the matrix H are small compared
to the overall number of elements. The code C is then defined as the set of all code

words v = (v0, . . . , vN−1) that satisfy the equation

v · HT = 0 , (2.21)

where 0 is a vector consisting of M = N−K zero elements and (·)T indicates matrix
transposition. Both, the elements of the code word vector v and the elements of
the parity check matrix Hj,i, j = 0, . . . , M − 1, i = 0, . . . , N − 1 are taken from the

binary Galois field GF(2).

Example 2.3. The following example shows matrix representation of the (7,4)-

Hamming code. Although the code is not really sparse, it is a very good, yet effi-
cient example, of a block code.

H =

⎡
⎢⎢⎢⎣

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎥⎥⎥⎦

Three parity-check equations are formed by four out of seven bits. This code has a
rate R = 1 − 3/7 = 4/7, can correct one bit errors, or can detect up to two bit errors.

Other properties, e. g., the Hamming weight, Hamming distance and the mini-
mum distance are defined as they are known for linear block codes from literature

14



2.2 LOW-DENSITY PARITY-CHECK CODE BASICS

(e. g., [RU08]).

The most common graphical representation of LDPC codes is the Tanner Graph

(TG) [Tan81].

Definition 2.4 (Tanner Graph). A TG, introduced in [Tan81], is a bipartite graph

G (V, C, E), that consist of two distinct sets of vertices with cardinalities
(∣∣∣V

∣∣∣ = N,
∣∣∣C
∣∣∣ = M

)

and a set of edges E =
{(

vi, cj

)
, vi ∈ V, cj ∈ C

}
that connects the vertices. The el-

ements of V and C are named variable nodes and check nodes, respectively.

The TG reflects the parity check matrix H of an LDPC code C, where the columns
correspond to the variable nodes, the rows correspond to check nodes and the

elements determine whether or not there is a connection between the nodes, i. e.,

(
vi, cj

)
∈ E , if Hj,i = 1 . (2.22)

Example 2.5. Fig. 2.6 shows the graphical representation of Example 2.3.

+ + +

+ + + + + + +

Figure 2.6: Tanner-Graph representation of (4,7)-Hamming Code (black circles: variable
nodes, circles with plus: check nodes)

In order to analyze and predict the behavior of an LDPC code, a closer look at

the cycles in the graph is helpful.

Definition 2.6 (Cycle). A cycle is a path from a node back to itself via several
edges, where no edge is used more than once. The number of edges included in

this path is called the length of the cycle. In case of bipartite graphs, e. g., TG, the
length is always even.

Definition 2.7 (Girth and Local Girth). The local girth gi is the shortest possible
cycle that includes the variable node vi. The girth g of an LDPC code C is the
shortest cycle of all local girths, i. e.,

g = arg min
i

gi (2.23)
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2.2 LOW-DENSITY PARITY-CHECK CODE BASICS

If you assume an extensive search of possible code words, which can be con-
sidered as a tree-like decoding process, there is no problem arising from cycles.
However, such an elaborate method is very expensive w. r. t. memory usage, and

hence, all commonly used algorithms for decoding like Belief Propagation (BP) or
Min-Sum (MS) decoding iterate between the same nodes during decoding, and

hence, are not tree-like. The price to pay for saving memory is a feedback of in-
formation, although it is processed in a way, to the same nodes as they originated.
This leads to an error floor in the BER performance especially in high Signal-to-

Noise Ratio (SNR) regimes. Therefore, the cycles in a graph (length, distribution,
etc.) shed light on the performance of the code, since the nodes do not receive just

new information but their own (processed) information as well, which can lead to
failures (cp. stopping sets [TJVW03] and trapping sets [CD]).

2.2.1 Belief Propagation

As previously mentioned, the great benefit of LDPC codes over many other codes5

is their superior error correction performance while still having a low complexity
decoding algorithm. Although there are a lot of names for each of these decoding

algorithms, most of them rely on the same basic idea, namely, Belief Propaga-
tion (BP). The idea behind it, is to operate on the TG representation of the code.

The variable nodes represent code word bits and the check node represent each
check equation. The variable nodes are initialized with the input LLRs of the de-
coder and improve their reliability by incorporating the information they receive

with help of the check equations. The bits, which are involved in each check equa-
tion, are indicated by the edges connected to a check node. Hence, the information

generated by each node is passed as a message along the edges.
The messages passing along the edges from check node cj to variable vi and

from variable node vi to check node cj will be denoted as sLC
e

((
vi, cj

))
and

sLV
e

((
vi, cj

))
, where s indicates the iteration number. Then the algorithm can

be summarized as shown in Alg. 1.

5Recently, the idea of polar codes are introduced in [Ari09], that fit to this statement as well, but
they have other advantages and disadvantage (e. g., universality, block length restriction, ease
of proofs and decoding complexity) and are not part of this thesis.

16
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Alg. 1 Belief Propagation Algorithm

Require: LD
a (v)

1: for all variable nodes vi, i = 0, . . . , N − 1 do
2: for all edges

(
vi, cj

)
∈ E connected to variable node vi do

3: (initialize extrinsic information of variable nodes with channel values)
4: 0LV

e

((
vi, cj

))
= LD

a (vi)

5: while s < smax (and not decoded yet) do
6: for all check nodes cj , j = 0, . . . , M − 1 do
7: for all edges

(
vi, cj

)
∈ E connected to check node cj do

8: (calculate extrinsic information of check nodes by means of
9: extrinsic information received from the variable nodes)

10: sLC
e

((
vi, cj

))
= 2 atanh

⎛
⎜⎝

∏

(vi′ ,cj)∈E\(vi,cj)
tanh

(
(s−1)LV

e
(
(vi′ ,cj)

)

2

)⎞
⎟⎠

11: for all variable nodes vi, i = 0, . . . , N − 1 do
12: for all edges

(
vi, cj

)
∈ E connected to variable node vi do

13: (calculate extrinsic information of variable nodes by means of ex-
14: trinsic information received from the check nodes and the channel
15: values)
16: sLV

e

((
vi, cj

))
= LD

a (vi) + ∑

(vi,cj′)∈E\(vi,cj)
sLC

e

((
vi, cj′

))

17: for all variable nodes vi, i = 0, . . . , N − 1 do
18: (calculate a-posteriori and extrinsic information of decoder by means of
19: extrinisc information received from the check nodes and the channel
20: values)
21: LD

e (vi) = ∑

(vi,cj)∈E
smaxLC

e

((
vi, cj

))

22: LD
p (vi) = LD

a (vi) + LD
e (vi)
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2.2.2 LDPC ensembles

Up to this point, it is possible to define an LDPC code either by its graph or by

its parity check matrix. Both can also be used to gain some insights into its most
likely behavior. Still, it is not possible to predict the performance of a code (in gen-
eral) without the need for intensive simulations. Therefore, it is beneficial to use

methods that simplify the analysis by introducing a more generalized description
of a group, or ensemble of codes, and by analyzing this model. These descriptions

(degree distributions, Protograph)were found in [Tho05] and can be distinguished
by their ability to preserve the structure of the code ensemble description in the de-
rived codes. Hence, the code ensemble descriptions can be classified as structured
or as unstructured code ensemble descriptions. In this section the focus is on the
latter, since §2.4.1 deals with a kind of structured code ensemble called PG.

The most common unstructured LDPC code ensemble description averages over
all codes having the same variable and check-node degree distributions. In order

to understand node degree distributions, it is necessary to define the term node
degree.

Definition 2.8 (Node Degree). The node degree of a variable node, or a check
node is the number of edges connected to the node and is denoted by dvi

, where

i = 0, .., N − 1 for variable nodes and dcj
, where j = 0, .., M − 1 for check nodes.

The minimum (maximum) of all variable node degrees and check node degrees is
denoted by dv,min or dv,max and dc,min or dc,max, respectively.

Now, it is possible to define the unstructured LDPC code ensembles by means
of polynomials. However, there are two different, but equivalent (in the sense

that they can be transformed into each other), perspectives that have to be distin-
guished.

Definition 2.9 (Degree Distribution from an edge perspective). An LDPC code
ensemble can be defined by its degree distributions from an edge perspective. The
variable node degree distribution is given by

λ (x) =
dv,max∑

l=d
v,min

λlx
l−1 (2.24)
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2.2 LOW-DENSITY PARITY-CHECK CODE BASICS

and the check node degree distribution is given by

ρ (x) =
dc,max∑

l=d
c,min

ρlx
l−1 , (2.25)

where λl and ρl are the fraction of edges that are connected to variable nodes of
degree l and check nodes of degree l, respectively.

Definition 2.10 (Degree Distribution from a node perspective). An LDPC code
ensemble can be defined by its degree distributions from a node perspective, then
the variable node degree distribution is given by

α (x) =
dv,max∑

l=d
v,min

αlx
l (2.26)

and the check node degree distribution is given by

γ (x) =
dc,max∑

l=d
c,min

γlx
l , (2.27)

where αl and γl are the fraction of variable nodes of degree l and the fraction of
check nodes of degree l, respectively.

Performance prediction can be carried out with help of the so-called Density
Evolution (DE) which is explained in §2.5.

2.2.3 Lifting procedure

As stated earlier, the reasons for using code ensembles instead of the LDPC codes
themselves are manifold, e.g., they enable prediction of properties and perfor-

mances without the need for intensive Monte-Carlo simulations.
The derivation of an LDPC code from any generic code ensemble description is

called lifting and the procedure can be summarized as follows.

1. Create a predefined number of variable- and check-nodes such that a number

of code properties (e. g., block length, rate, etc.) are fulfilled and/or they
meet the requirements of the code ensemble suggested.
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2.2 LOW-DENSITY PARITY-CHECK CODE BASICS

2. Place and permute the edges such that they meet the requirements (e. g.,
degree distrubtions, protograph) of the code ensemble suggested.

This procedure will be explained by means of degree distributions as code ensem-

ble description, since the course of action is very close to the one used for PGs.
Nevertheless, the differences in the modus operandi are explained after a formal
introduction of PGs in §2.4.1.

Permutation of Edges

The permutation of edges is a very crucial process, since unfavorable configura-

tions in terms of large number of short cycles within the graph can occur. An
exhaustive search of all possible edge configurations that meets the code ensemble

requirements is not feasible after all. Therefore, methods to obtain local maxima,
which are the local girths, are favored. In literature, there are two widely known
methods used for the permutations of edges which are adapted for PGs later on.

These algorithms are briefly introduced in the following and their advantages and
disadvantages are outlined. The reader is referred to the original papers for further

studies of this topic.

Progressive Edge Growth - Algorithm

The Progressive Edge Growth (PEG) algorithm is introduced in [EA05] for the de-

gree distribution based code ensembles. Nowadays, the algorithm is widely used,
and adapted to meet other requirements, e. g., protograph definitions. The basic
idea is to determine the edges connected to each variable node successively, i. e. in

a variable node-by-variable node manner, while maximizing the local girth of the
node.

Starting with an unconnected variable node, edges are placed in succession in
order to connect this node with the graph that has already been built until the des-
ignated degree of the node is reached. Therefore, a tree with the current variable

node as a root element is spanned before every placement of a new edge. The
connections of the tree are based on the current graph configuration. Hence, the

edge is placed between the current variable node and the most distant check node
available. In this sense, “most distant” means that no cycle, or the largest cycle
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possible, is formed.

Remark 2.11. Various strategies can be applied w. r. t. to the order of variable nodes

chosen, such as the connections allowed in each step or a choice of the connecting
node, if several nodes have the same distance to the root variable node.

The greatest advantage of this method is its straight-forward implementation
and its easy adaption to different requirements, e. g., to PGs. However, since it
optimizes the local maxima of the girth alone and does not take the distribution

of short cycles into account, the algorithm will, most likely, not find best graph
configuration possible. The algorithm does not an exhaustive search, but rather

maximizing the girth of the current node. Hence, it might be better to avoid a very
large cycle in the beginning and may have a very short cycle at the end, in favor
for a slightly shorter large cycle in the beginning and a slightly longer short cycle

at the end of the algorithm processing.

Approximated Cycle EMD (ACE) - Algorithm

The second method that is introduced briefly at this point is the so-called ACE

algorithm [TJVW03]. It addresses some of the issues of the PEG by introducing
another metric based on the Extrinsic Message Degree (EMD), which is explained

in [TJVW03] as well. This may lead to shorter cycles earlier in the process, if el-
ements of this short cycle are also part of larger cycles. In this case, the nodes
receive a large amount of new information from other nodes as well. Therefore,

shorter cycles are not that harmful, if there are some nodes with high degrees
and/or these nodes are involved in larger cycles.

2.3 Low-Density Parity-Check Convolutional Codes

In this section, a very brief definition and explanations of LDPCC codes is given.
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2.3.1 Definition

The extension of LDPC codes from block codes to its convolutional counterpart is
recapitulated in this section. Both versions can define their set of valid codewords
by means of the Parity-Check Matrix (PCM) fulfilling the following condition:

v∞ · H[−∞,∞]
T = 0∞ , (2.28)

However, the dimensions of the code words and the PCM can be infinite, which is
denoted by the ∞ subscript. Additionally, the PCM has a particular band structure
given by:

H[−∞,∞] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

Hms (τ) . . . H0 (τ)
. . .

. . .

Hms (τ + T − 1) . . . H0 (τ + T − 1)
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.29)
In general, each sub matrix Hi (t) can be different depending on the time instance

t = τ and its dependence on previous time instances t = τ − i, for i = 0, . . . , ms.
All matrices have the same dimensions. However, it also reasonable to repeat
matrices after a certain number of time instances, which is called the periodicity

T , i. e., Hi (t + T ) = Hi (t). For T = 1 the code is called time-invariant and time-
variant otherwise. For ms = 0, the code can be seen as an infinite number of

independent LDPC-Block Codes (BCs).

2.3.2 Decoding

Although LDPCC codes are defined to have an infinite PCM, and therefore, an infi-
nite code word, most communication systems use packets for a transmission. This
results to make use of a block based approach. This can be modeled by assuming

all-zero sub matrices Hi (t) for t < t1 and t > t2.
Then, there are two different perspectives available for approaching the decoding

issue for such a code. On one hand, the code can be treated as a normal block code,
where the structure of the PCM does not have any influence on the decoding pro-

22
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cess. Then, decoding can be carried out with the help of an ordinary block based
BP decoder, or its related algorithms as well. On the other hand, the decoder can
exploit the band structure, i. e. the nodes at the end of the PCM are not directly

connected to the nodes at the beginning, but by iterating locally and providing
higher reliability information to nodes at the end of the PCM. Such a decoding

strategy is called window decoding (e. g., [SPL09], [LPF11]), which subsequently
defines a region that is updated for a while before it is changed.
Since the optimal performance should be achieved and it is not absolutely clear (at

the moment) what the best choice for the window size is, the block code approach
is used throughout this thesis. My colleague and also PhD student is studying this

property ( [uHPL+12], [uHLF12]).
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2.4 Protographs

The term Protograph (PG) was used in [Tho05], for the first time, in order to

name a graph that describes an LDPC code ensemble, where each code obtained
by a lifting procedure that has the same structure as the protograph. The basic

properties and representations as well as methods for lifting are shown in this
section. Furthermore, the concept of PGs can be extended to a form which has
many properties in common with CC. Codes that have this nature are the main

focus of this thesis and are explained in greater detail.

2.4.1 Basic Properties and Representations

Definition 2.12. A PG is a relatively small bipartite multigraph G (VP , CP , EP ), that

consist of two distinct sets of vertices with cardinalities
(∣∣∣VP

∣∣∣ = NP ,
∣∣∣MP

∣∣∣ = MP

)

and a set of edges EP =
{(

vi, cj

)
, vi ∈ VP , cj ∈ CP

}
that connects the vertices.

In comparison to Tanner Graphs (TGs) [Tan81], whose description is very sim-
ilar, the set of edges is rather a multiset than a simple set, i. e. each edge is asso-

ciated with a multiplicity
∣∣∣
(
vi, cj

)∣∣∣ = m, m ∈ N+. In case of a TG, the multiplicity

m = 1, ∀
(
vi, cj

)
∈ EP . The set VP can be separated into sets for punctured vertices

Vp
P and unpunctured vertices Vu

P , where VP = Vp
P ∪ Vu

P and Vp
P ∩ Vu

P = ∅. The size
of these sets are given by

∣∣∣Vu
P

∣∣∣ = Nu
P and

∣∣∣Vp
P

∣∣∣ = Np
P . The reader should accept for

now that there is such a distinction, but section §2.5.2 explains the reasons and
the consequences of such a distinction in greater detail.
An example of a PG is illustrated in Fig. 2.7a, where vertices with a + represent

CP , called check nodes, and all other vertices represent VP , called variable nodes.
In order to distinguish the variable nodes further, all unpunctured variable nodes

are filled and all punctured variable nodes are not. The multiplicity of an edge is
shown by parallel edges between the same vertices.

Example 2.13. The two representation types of the ARJA protograph, introduced

by Divsalar, et al. [DJDT05], are shown in Fig. 2.7.

The equivalent representation in matrix form is shown in Fig. 2.7b, which is
called the base matrix B of the protograph. It is the biadjacency matrix of the

graph, where each column corresponds to a variable node and each row corre-
sponds to a check node. The elements of the base matrix are 0, if there is no
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+ ++

+ + + + +

+ ++

+ + + + +

(a) graph representation

B =

⎛
⎜⎜⎝

1 2 0 0 0
0 3 1 1 1
0 1 2 1 2

⎞
⎟⎟⎠

(b) matrix representation

Figure 2.7: Protograph - graphical and matrix representation

connection between the nodes or represent the multiplicity of the edge.

Both representations are used throughout the thesis depending on which represen-
tation is more suitable to explain certain relationships.

As stated before, PGs can be regarded as a kind of LDPC code ensemble description,
where the resulting code has the same structure as the PG itself. This statement
translates into the direct mapping of a node of the protograph to a group of nodes

and of an edge to a group of edges in the TG of the LDPC codes derived. In light of
this relationship, the elements of the PG (variable nodes, check nodes and edges)

can be regarded as variable node classes, check node classes and edge classes, re-
spectively.
The procedure to derive LDPC codes from a code ensemble is called lifting and the

general idea is explained in §2.2.3. For PGs, there are more restrictions, e. g., the
number of nodes (multiple of the PG nodes) and how to connect these nodes (the

structure of the PG must be preserved).

In the following some properties of the PG are defined.

Definition 2.14. The puncturing ratio P describes the ratio of punctured variable

nodes to total number of variable nodes, and is written as

P = Np
P

NP
= 1 − Nu

P

NP
= Np

P

Np
P + Nu

P

(2.30)

Definition 2.15. The protograph (code ensemble) rate RP is given by:

RP =
(

1 − MP

NP

)
·
(

1 − 1
P

)
= NP − MP

NP
· NP

Nu
P

= NP − MP

Nu
P

(2.31)
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2.4.2 Convolutional Protograph

A significant portion of this work is focused on the use of PGs for Low-Density

Parity-Check Convolutional codes. In general, there are several ways to define
these codes. However, they are very similar and can be transformed into one
another. This thesis utilize the Convolutional Protograph (CPG) in order to show

the convolutional structure of the codes derived.

Starting point for the considerations is a PG, e. g., Fig. 2.7. Its base matrix can

be split into ms + 1 matrices of the same dimensions, having the property

B =
ms∑

i=0
Bi , (2.32)

where each matrix Bi is called a partial base matrix and ms is called syndrome
former memory. A convolutional structure of the code can be achieved by means
of a band structured matrix given by

B[−∞,∞] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

Bms . . . B0
. . .

. . .

Bms . . . B0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.33)

Although, this structure can be called a pure convolutional code, a limitation of the

length is necessary for several reasons:

Fixed Beginning It is unavoidable to define a starting point for the transmission
. Without loss of generality, the time instance of the beginning can be set to

t = 0.

Termination Although a transmission can be very long, it will eventually end and

various kinds of endings are feasible.

Modified Structure The way the code starts and ends modifies the structure in a
certain way and can improve the code performance. A detailed analysis of

this change is the main focus of this thesis and is carried out in the following
chapters.
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The final terminated convolutional base matrix is given as

B[0,L−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0
...

. . .

Bms . . . B0
. . .

...

Bms

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(L+ms)MP ×LNP

. (2.34)

Example 2.16. A Terminated Convolutional Protograph for ms = 2 and L → ∞
based on the PG in Example 2.13 is shown
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Figure 2.8: Unwrapped convolutional protograph with ms = 2 and without termination
(L → ∞)

Having defined and analyzed the Terminated Convolutional Protograph (TCPG),
ordinary lifting methods like ACE and PEG can be used derive the final codes.
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2.5 Analysis Methods

This work aims to find design rules or recommendations of Protograph-based Low-
Density Parity-Check Convolutional (PG-LDPCC) codes for the specific application

scenario of turbo equalization. In this regard, certain parts can be analyzed alone,
whose results can be used to study the interplay between several components in
order to eventually determine the performance of the overall system. This section

deals with the methods used throughout the thesis to analyze and evaluate the
codes proposed. The first technique is a very powerful tool to analyze the perfor-

mance of any iterative system, and is called Extrinsic Information Transfer (EXIT)
chart. Then, the general methodology, requirements for the input and output pa-
rameters as well as limitations of this tool are worked out. The second part of this

section focuses on the analysis of code ensembles defined by certain parameters
by means of a method called Density Evolution (DE). In a nutshell, this method
tracks the probability density functions throughout the decoding process in order

to predict the performance of the code ensemble under certain conditions. DE is
explained with the aid of unstructured codes, since the basic principle is the same

as that of structured codes. As is the case for PG-based codes, it is possible to find
closed form equations for certain channels assumed, and it was first defined for
these kinds of code ensembles. Additionally, the characteristic features needed for

the extension of DE for PGs are shown.

2.5.1 System Analysis - EXIT Charts

EXIT charts were introduced for the analysis of iteratively decoded parallel con-
catenated convolutional codes, commonly known as Turbo Codes, in [tB01]. Later

they were extended to various kinds of iterative systems, all having the turbo princi-
ple (cf. [Hag02]) in common. Nowadays EXIT charts are widely used as a standard

tool. Hence, the basic idea, requirements, limitations and its relation to the mea-
sures in system model assumed (§2.1) are briefly introduced.
Up to this point, all explanations regarding information transfer are done by means

of the system model. However, analysis is partially carried out based on informa-
tion theory as well. Therefore, the relationship between the measures used before

and the information theoretic measure must be illustrated, where the relationship
is justified based on [Hag02] (due to the tutorial nature of that paper). In order
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to avoid repeating basic knowledge of information theory, the author assumes that
the reader is familiar with the definition of Entropy, Conditional Entropy and Mu-
tual Information (MI) (otherwise, be referred, e. g., to [Mac03]). Then, the mutual

information between the code word encoded and LLR values with respect to the
code word can be defined as follows.

Definition 2.17 (Mutual Information between code word and LLR-values). The
MI I (L; X) between antipodal encoded equally likely binary inputs, i. e., x ∈
{+1, −1}, Pr (x = −1) = Pr (x = +1) = 1

2 , with consistent and symmetrically dis-
tributed LLR values is defined as

I (L; X) = 1 − E
[
log2

(
1 + e−L

)]
= 1 − 1

N

N−1∑

n=0
log2

(
1 + e−xn·Ln

)
, (2.35)

where the ergodic theorem, i. e., replacing the expectation by the time average, is
applied and N is the number of samples (usually considered to be quite large).

With this relation in mind, it is possible to shift consideration to an information
theoretic level, which is used for explaining the details of EXIT charts.

The basic idea of an EXIT chart is to illustrate the exchange and improvement of
reliability information in a system over several iterations in order to predict the

most likely behavior of such a system.

Definition 2.18 (SISO module). A SISO module yields reliability information with

respect to a measure X based on the reliability information with respect to the
same measure and additional side information. The reliability measure before the
processing through the module is called a priori information Ia, the reliability mea-

sure after the processing is called a posteriori information Ip and the information
gain is called extrinsic information Ie, i. e.

Ip = Ia + Ie . (2.36)

It is common to make use of LLR values in order to represent the reliability infor-

mation.

Since there is a direct relation between the MI and the LLRs under the conditions

mentioned in Definition 2.17, the respective LLR values before and after the SISO
module are called a-priori LLR La and - posteriori LLR Lp. The gain in information
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can be expressed by means of LLR values as well and is called the extrinsic LLR Le,
such that

Lp = La + Le . (2.37)

It is also possible to find a mapping f (Ia) = Ie and as a result, f (Ia) + Ia = Ip. The
extrinsic transfer function f can be illustrated in a coordinate system, with abscissa

Ia and ordinate Ie.

In any turbo-like system, there is an iterative exchange of these information

measures by means of LLR values, where the output information of one is used
as the input of the other and vice versa. In particular, there is an exchange of
extrinsic information between the modules. In the case considered, there are the

two modules, namely, the soft equalizer and the decoder, which are both SISO
modules. A superscript D is used for the decoder and the superscript E is used for

the soft equalizer in all measures, e. g., I D
e is the extrinsic mutual information of

the decoder and LE
p is the a-posteriori LLR of the soft equalizer.

The extrinsic functions of the equalizer and the decoder can be shown in the same

EXIT chart, where the axes for the latter are swapped because the output of one is
the input of the other.

Example 2.19. The extrinsic transfer curves for the two channels considered can
be found in Fig. 2.9 and Fig. 2.10. The curves for the equalizer for the different
channels are calculated by using the the previously discussed approach by averag-

ing over a sufficiently large number of repetitions and applying the law of large
numbers. While the UWB-NLOS channel considered has a relatively flat shape, the

curve of the exponentially decaying 10 tap channel has a very steep shape due to
a higher ISI. Therefore, additional information from the decoder in the UWB case
can increase the output of the equalizer only slightly. In comparison to the first

channel, the latter can make use of this information more efficiently. When both
figures are compared to each other and the SNR values are taken into account,

it can be seen that although Ie is in the same range for Ia = 0, the SNR values
are much lower for the UWB-NLOS channel. However, Ie would be same for both
channels for Ia = 1, because the equalizer could eliminate every ISI and only the

additive white Gaussian noise is left.

Remark 2.20. The first module activated never has any information from the other
module and all of its extrinsic information generated is based on the side informa-
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Figure 2.9: Extrinsic Transfer Curves for Soft-Equalizer for UWB NLOS channel - low ISI

tion, e. g., mapping rules, channel estimator, etc..

The exchange of information throughout several iterations can be represented
by trajectory between the curves and the reliability of the information is the higher

the closer the trajectory comes to point (1, 1) without intersection (Not shown here,
but in cf. [Hag02])
In general, the idea of the EXIT chart can be extended even to more than two

dimensions, if the number of modules involved in an iterative processing increase.
However, this is not done very often due to a lack of proper visualization for higher

dimensions.

2.5.2 Code Analysis - Density Evolution

As previously discussed, it is possible to define an extrinsic transfer curve for any
module able to exploit soft information to produce improved soft information by
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Figure 2.10: Extrinsic Transfer Curves for Soft-Equalizer for 10 tap channel - high ISI

measuring this information before and after the module. However, such an ap-
proach still needs a significant number of simulation runs, but once such an extrin-
sic transfer curve is obtained, it can be used for performance predictions in larger

systems.
However, in case of LDPC codes, another approach can also be used to determine

an extrinsic transfer curve of this code by utilization the code ensemble descrip-
tions. This method is called Density Evolution (DE) (the idea was introduced
in [RU01]), where the basic idea is to track the Probability Density Function (PDF)

through the decoding process for a given input distribution and any given code en-
semble6. In case of the Binary Erasure Channel (BEC) and related channels, there

6In theory, it is possible to track this for a given code, e. g., for a given parity-check matrix. How-
ever, such an analysis is performed on a code ensemble than a particular code, since tracking
of large number of PDFs is computationally intensive and, more importantly, it is still averaging
over all the codes having this structure.
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are known closed form solutions.
In the next section, the DE for an unstructured code ensemble by means of de-
gree distributions, under the assumption that the input approximately follows a

Gaussian distribution, is shown. This is sufficient for the understanding of the DE
algorithm and highlights some specific challenges that arise. Following which, a

modification needed for the application of the algorithm to structured ensemble
description, and particularly to PGs, are highlighted and explained.

Quantized Density Evolution

As described, e. g., in [Chu00] and [Ric07] DE predicts the decoding behavior.

Hence, it is necessary to take a closer look at the operations executed at the nodes
involved. On the variable node side, there is an addition of LLR values. Assuming
the messages are not LLR values themselves, but rather the PDFs of LLR distribu-

tions, the operation executed in this case is a convolution of the PDFs. On the check
node side there is no such a function available, i. e., a different approach, which

is a quantized version of density evolution, must be used. Q (Lw) is the quantified
version of an LLR Lw given by

Q(L) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⌊
Lw

Δ + 1
2

⌋
Δ Lw ≥ Δ

2⌈
Lw

Δ + 1
2

⌉
Δ Lw ≤ −Δ

2

0 otherwise,

(2.38)

where Δ is the quantization interval. A clipping of the quantified LLRs into the

range [−B, +B] to make computation numerically feasible is undertaken and the
clipped, quantized, LLR Q̂ (Lw) is defined as

Q̂ (Lw) =

⎧
⎪⎪⎨
⎪⎪⎩

sgn
(
Q((Lw))

) · B
∣∣Q (Lw)

∣∣ ≥ B

Q (Lw) otherwise.
(2.39)

The number of quantization steps q can be calculated by q = 2B
Δ , but it is recom-

mended that the quantization interval be determined by fixing the values ofq and

B.

Let pw = (pw[−B/Δ], ..., pw[B/Δ]) be the Probability Mass Function (PMF) of a
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quantified and limited LLR Q̂ (Lw), where the elements are defined as

pw[k] = P (Q̂ (Lw) = kΔ) for k ∈
{

−B

Δ , ...,
B

Δ

}
(2.40)

A non-linear operation on check node side must evaluated, and hence, a two-input

operator T (a, b) that maps two quantified and clipped LLR inputs onto another
quantified and clipped LLR, is defined as

T (a, b) = Q̂

⎛
⎜⎜⎝2 atanh

⎛
⎜⎝tanh

⎛
⎝Q̂(a)

2

⎞
⎠ tanh

⎛
⎝Q̂(b)

2

⎞
⎠

⎞
⎟⎠

⎞
⎟⎟⎠ . (2.41)

The two-input operator reflects the decoding strategy of belief propagation. Nev-

ertheless, it can be easily adapted to other decoding strategies, e. g., the operator
Ts(a, b) for the sig-min approximation is given by

Ts(a, b) = Q̂(sign {a · b} · min
{|a| , |b|} . (2.42)

After having defined the operations on LLRs, another two-input operator Γ(p1, p2)
that operates on PMFs, has to be defined. The elements Γ[k] can be calculated by

Γ(p1, p2) : Γ [k] =
∑

(i,j):kΔ=T (iΔ,jΔ)
p1[i]p2[j] , (2.43)

which adds up all probabilities having a specific quantified and limited LLR value.

In order to simplify the notation, let the n-th power of a one-input operator Γ(p1)
be the recursive application of Γ(., .) (n − 1)-times , i. e.,

Γn(p1) = Γ(p1, Γ(p1, Γ(.., p1))) . (2.44)

For the sake of completeness, the convolution of twoPMFs is denoted as

p1 ∗ p2 : (p1 ∗ p2) [k] =
B∑

−B

p1[i]p2[j − i] , (2.45)

and the (n − 1)-times recursive application of the convolution is denoted as

⊗n (p1) = p1 ∗ (p1 ∗ (.. ∗ p1))) . (2.46)
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However, since this the convolution is a computationally intensive method and the
PMFs are reused a couple of the times, it is reasonable to make use of a correspond-
ing base system. Hence, the PMFs are transformed in the Fourier domain, where a

multiplication is the corresponding operation for a convolution in the real domain.
After processing of the convolutions, the PMFs are required to be re-transformed

to the real domain for further processing. The Fourier transformation is denoted
by F {p}.

Density Evolution for Unstructered Codes

For the input of the DE, a certain PMF must be assumed since it mimics the decod-

ing process. Without loss of generality, the all-zero code word is assumed and a
PMF according to a transmission over an Additive White Gaussian Noise (AWGN)

channel is generated. There the variance σ2 can be used to adjust the a-priori in-
formation that is reflected by the PMF. Once such an input PMF pD

a is defined, the
following algorithm Alg. 2 is applied using the equations from Eq. 2.24 - Eq. 2.27.

Alg. 2 Density Evolution for Degree Distributions

Require: pD
a

1: 0pV
e = pD

a
2: while s < smax (and not decoded yet) do
3: spC

a = s−1pV
e

4: spC
e =

dc,max∑
l=d

c,min

ρlΓl−1
(

spC
a

)

5: spV
a = spC

e

6: spV
e =

dv,max∑
l=d

v,min

λl

(
pD

a ∗
(
⊗l−1

spV
a

))

7: pD
e =

dv,max∑
l=d

v,min

αl

(
⊗l

spV
a

)

8: pD
p = pD

a (vi) ∗ pD
e (vi)

Density Evolution for Protograph-Based Codes

In general, an analysis of PGs with the help of a DE is feasible, with the aforemen-

tioned degree distributions, since these distributions can be derived from the PG
as well. However in this case, not only is a loss of information about the structure
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of the parity-check equations involved, but there is also a limitation of avoiding
degree-1 nodes. Considering these two facts, it seems natural to extend the DE for
the application to the PGs, where these drawbacks are eliminated.

Taking a closer look at the algorithm, it can be seen that, after each iteration of
the variable and the check nodes, the PMFs are averaged (given the degree dis-

tributions from an edge perspective) in order to be used as inputs for the other
components. Hence, the algorithm assumes that there is only one connection from
the input of the decoder to the variable node decoder, and exactly one edge be-

tween the variable node decoder and the check node decoder, i. e., the algorithm
deals with maximum two PMFs at a time in the variable node decoder. Nothing

else is possible due to lack of further structural information.
In the case of a PG, each node can be seen as a sub-decoder of the particular compo-
nent having distinct inputs and outputs to various other sub-decoders of the other

component, i. e., the algorithm is applied directly to the graph and averaging is
no longer necessary. Hence, the algorithm can be simplified in some areas and ex-
tended in others. All such modifications applicable to PGs will not be shown here in

order to accurately reflect the relations in the graph, since it would padding out the
number of variables employed in this thesis. This additional variables would make

the thesis unnecessarily complex without contributing to much to actual topic of
this thesis. Therefore, only the changes mandatory are pointed out and the reader
is referred to [Ric07], which has a very good description of the algorithm.

1. Each node can have a distinct input PMF, denoted by pD
a (vi) , ∀vi ∈ VP

2. All a-priori and extrinsic PMFs must be considered with respect to the edge
they are transmitted over, i. e., pC

a

((
vi, cj

))
, pV

a

((
vi, cj

))
, pC

e

((
vi, cj

))
, and

pV
e

((
vi, cj

))
must be distinguished.

3. Every extrinsic PMF is calculated based on distinct a-priori PMFs and the

input PMF,

i. e., pC
e

((
vi, cj

))
= f

⎛
⎝
{

pC
a

((
vi′ , cj

))}
⎞
⎠ and

pV
e

((
vi, cj

))
= g

⎛
⎝
{

pV
a

((
vi, cj′

))}
, pD

a (vi)
⎞
⎠
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4. Unary functions (Γl (·) and ⊗l (·)) are needed only for
∣∣∣
(
vi, cj

)∣∣∣ > 1, i. e.,

pC
e

((
vi, cj

))
= f

⎛
⎝
{

pC
a

((
vi′ , cj

))}
, Γl−1

((
vi, cj

))
⎞
⎠ , where i �= i′ and

pV
e

((
vi, cj

))
= g

⎛
⎝
{

pV
a

((
vi, cj′

))}
, ⊗l−1

((
vi, cj

))
, pD

a (vi)
⎞
⎠ , where j �= j′.

5. Each node can have a distinct output PMF, denoted by pD
e (vi) , ∀vi ∈ VP .
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2.6 Main Points of this Chapter

This section summarizes the most important assumptions, boundary conditions

and tools applied.

System Model
• The modulator uses a linear mapping in order to benefit most from the itera-

tive receiver structure.

• A cyclic prefix is added to the symbols in order to enable an equalization in

frequency domain.

• Two channels with almost opposite characteristics w. r. t. ISI are considered.

The low ISI channel follows a real life UWB-NLOS PDP. The high ISI channel
follows a 10 tap exponentially decaying PDP.

• Block fading is assumed.

• The soft equalization is done in frequency domain and the output of the soft
equalizer is approximately Gaussian distributed.

LDPC codes
• The codes studied in this thesis are based on Protograph.

• All code words are transmitted as blocks. In the case of the convolutional

variants the CPG are terminated to meet this requirement.

• The lifting is done by means of the PEG and the ACE algorithm.

Analysis
• Extrinsic transfer curves of codes are determined by means of quantized den-

sity evolution.

• Extrinsic transfer curves of the soft equalizer are determined by means of
simulations.

• The interplay of soft equalizer and decoder are analyzed by means of EXIT
charts.
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