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Abstract
This dissertation focuses on the decoding of low-density parity-check (LDPC) con-
volutional codes, also known as spatially coupled LDPC (SC-LDPC) codes. These
codes combine the properties of both LDPC block codes (good performance for
long block lengths) and convolutional codes (good performance for short block
lengths), and are shown to be suitable for applications that allow medium to large
block lengths. The first part of the dissertation deals with efficient decoding of SC-
LDPC codes under practical constraints like decoding latency and decoding com-
plexity while keeping their good performance advantage over LDPC block codes.

We divide the decoders in two classes based on their resulting decoding latency
and complexity; (i) block decoding runs belief propagation algorithm over com-
plete chain of coupled codeword resulting in a large decoding latency and decoding
complexity, (ii) windowed decoding, on the other hand, exploits the convolutional
structure of the coupled code making decoding latency and complexity indepen-
dent of the length of the code. We consider protograph based codes, since this
allow us to assess the performance of code ensemble, rather than the performance
of a single code. Both asymptotic and finite length analysis are performed to show
the superiority of SC-LDPC codes over LDPC block and convolutional codes for
medium to large latency range. For very short latency requirements, convolutional
codes decoded using Viterbi decoder are found to be suitable.

In order to reduce the decoding complexity, traditionally used uniform serial de-
coding schedules are applied within the window. However, our results show that
this only gains 18% reduction in decoding complexity compared to parallel decod-
ing schedule. We propose non-uniform window schedules which are based on the
observed decoding convergence behavior within a window. These result up to 50%
reduction in decoding complexity compared to uniform window schedules without
any loss in performance.

Non-uniform schedules require estimates of error probability during the iterative
process and hence the resulting schedule is time variant. However, based on con-
clusions drawn using the asymptotic analysis, we propose a pragmatic decoding
schedule that does not require any additional calculation within the decoding pro-
cess and with little loss in performance reduces the decoding complexity by 45%
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compared to the uniform schedule. Finally, taking into account the non-uniform
nature of the update rule, we propose an implementation/sequencing strategy such
that the decoding throughout is doubled without significantly increasing the hard-
ware requirements.

The second part of the dissertation deals with the application of SC-LDPC codes
for block-fading channel. Block-fading channel is a suitable model for mobile-radio
channel, where the channel state stays constant for multiple symbol durations (Nc).
Hence a codeword of lengthN is divided into F equal parts where F = N/Nc. Codes
on block-fading channel are characterized by their (i) outage probability, Pout, and
(ii) diversity order, d. For block codes, a special structure is required to guarantee
a required d. However in convolutional codes, it largely depends on the constraint
length (or memory) of the code.

We present bounds on the maximum achievable diversity for SC-LDPC codes de-
coded using maximum likelihood (ML) decoder and a sub-optimal iterative de-
coder. For a code decoded by an ML decoder, it turns out that d is related to the
blockwise minimum Hamming distance dmin of the code. However, since SC-LDPC
(in general LDPC) codes are decoded using a sub-optimal iterative decoder, the
maximum diversity under iterative decoding is calculated by the blockwise stop-
ping distance smin of the code, where smin ≤ dmin. Here the main contribution is
an algorithm to design a protograph for which smin = dmin.

The root-LDPC code is one example of block codes that have a special structure to
achieve d = F . However, these codes require R = 1/F , i.e., to achieve high diversity
order, code rate has to be decreased. The major advantage of the proposed SC-
LDPC codes is that these do not require a special structure to achieve the required
diversity. Furthermore, diversity order can be increased by increasing the memory
of the code and without decreasing the code rate. Another advantage of SC-LDPC
codes is robustness against synchronization offset, where the loss in performance
due to synchronization offset can be compensated by increasing decoding latency
i.e., W for window decoder. On the other hand, root-LDPC codes have to be
designed specifically for a given F and their performance drastically degrades in
the presence of synchronization offset.
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Chapter 1

Introduction

Forward error correction (FEC) codes add redundant bits to information bits such
that a reliable communication over a noisy channel is viable. The roots of FEC
coding date back to Shannon’s pioneer work [Sha48] in 1948, where he proved
that a coded transmission with rates close to capacity is possible with arbitrarily
low error rate given long codes and an optimal decoder. However, the questions
related to the practical coding scheme and the length of the codeword required to
achieve good performance was not answered by Shannon. Note that the length of
the codeword determines the information delay and is a critical parameter for the
choice of coding scheme in any system. It has been therefore the main focus of the
researchers to find codes with very good performance while fulfilling the latency
requirements imposed by different applications.

In general, it is possible to construct a code that operates very close to the limits
of the channel (also known as Shannon limit) by assuming very long codewords.
However, in practice one has to use a codeword of finite length, hence introducing
a gap between the Shannon limit and code performance. Naturally one way to re-
duce this gap is to increase the codeword length. The codeword length has a direct
impact on both decoding latency and decoding complexity and hence different ap-
plications require codes with different lengths depending on the available resources
and latency requirements. Hence a system designer is not only required to provide
codes with different rates but also with different lengths to get a trade-off between
latency (length of a codeword) and performance. As an example, in WiMAX for
each rate, blocks ranging from 576 to 2304 bits are proposed.

Encoding information bits to generate code bits can be performed either blockwise
(block codes) or in continuous (convolutional codes) manner. In case of blockwise
encoding, a unique code is required to define blocks of different lengths. However,

1
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for continuous encoding, one can simply run the encoder longer to obtain a code-
word of different lengths. Hence in convolutional codes, the problem of designing
codes of different length can be simplified compared to block codes.

Scope and Outline of this Work

Gallager introduced a class of linear codes which are described by a sparse parity-
check matrix [Gal63] referred as low-density parity-check (LDPC) codes. Since
these codes are constructed from sparse matrices, these can be decoded using a
simple and practical iterative decoder (see Section 2.2.2). Hence as a result, in
general, the decoding complexity per decoded bit is independent of the length of
the code when the number of decoding iterations is fixed. Thanks to this property
of LDPC codes, various standards that deals with high information transfer rate,
e.g., DVB, WiMAX, WiGig, propose LDPC codes which allow them to operate
close to the Shannon limit using long block lengths. In contrast to this, several
applications such as, wireless sensors, machine-to-machine communications, etc.,
because of their low information transfer rate, propose convolutional codes since
they are known to be suitable when small block lengths are inevitable.

In this work, we combine the properties of both LDPC (good performance for
long block lengths) and convolutional (good performance for short block lengths)
codes, and propose to use a convolutional version of LDPC codes, otherwise known
as spatially coupled LDPC (SC-LDPC) codes for applications that allow medium
to large block lengths. The dissertation is structured as follows.

• In Chapter 2, we define LDPC and SC-LDPC codes. A structured way to
construct codes using protograph is also described together with the iterative
decoding algorithm used throughout the dissertation. Finally we show by
using an example, the threshold saturation phenomenon of SC-LDPC codes.

• Chapter 3 starts by describing the decoding latency associated with the two
possibilities to decode SC-LDPC codes namely; block decoding and window
decoding. It turns out that using window decoding is efficient in terms of
latency. However, this also results in some constraints on the protograph and
are discussed using density evolution. Finally, computer simulation results
of finite length codes, generated using a progressive edge growth algorithm
(PEG), are presented that show the performance of the window decoder and a
comparison with Viterbi decoded convolutional codes and LDPC block codes.
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• In Chapter 4, decoding complexity of the window decoder is discussed. We
propose non-uniform window schedules that utilize the structure of code to
reduce the decoding complexity. The definition of the decoding complexity
and a comparison between the window decoder and the block decoder in
terms of decoding complexity shows that block decoding is not efficient for
SC-LDPC codes in terms of complexity. Next non-uniform decoding schedules
are proposed together with their density evolution and simulation results. Fi-
nally a practical pragmatic decoding schedule is introduced. The pragmatic
schedule, with little loss in performance, is shown to be able to reduce de-
coding complexity by ≈ 50% compared to the traditional decoding schedules.
We also present an implementation of the proposed pragmatic schedule that
allows to double the decoding throughput without doubling the requirement
on hardware components.

• In Chapter 5, we demonstrate the suitability of SC-LDPC codes for mobile-
radio (block-fading) channel. We start by defining the channel model and
parameters used to characterize the channel. Next the existing solution for
block-fading channel is described together with its limitations. We motivate
the use of SC-LDPC codes for block-fading channel and provide an algorithm
to design protographs suitable for block-fading channel. The performance
evaluation is presented for the designed codes using both density evolution and
computer simulations of finite length codes. Furthermore, using simulations
we show that the proposed codes are robust against the synchronization offset
between the transmitted bits and code bits.

• Finally we draw conclusions and provide some future research directions in
Chapter 6.

The results and analysis is limited to regular LDPC codes, however, without loss of
generality, these can be extended to irregular LDPC codes. Furthermore, the finite
length codes used for simulations are not optimized and we use the PEG algorithm
only to avoid cycles of length 4.





Chapter 2

Preliminaries

In the following, we describe the system model considered throughout the disser-
tation. LDPC block codes and their iterative decoding algorithm is detailed in
Section 2.2. Section 2.3 introduces the convolutional version of LDPC codes, also
known as spatially coupled LDPC codes, which is the main focus of this disserta-
tion.

2.1 System Model

In order to make the nomenclature clear, we start with the definition of system
model which will be considered throughout the dissertation. A simplified system
model consisting of a source, channel encoder, modulator, physical channel, demod-
ulator, channel decoder and a sink is considered (see Fig. 2.1). The blocks which
are not directly associated to channel coding problems, e.g., channel estimation,
channel equalization, analog-to-digital conversion etc, are not considered here for
simplicity of the model. The source generates an information word u = [u1, . . . , uk]
of k information bits. The channel encoder maps the information word u to a
codeword v = [v1, . . . , vn] of length n, hence adding n − k redundant bits to the
information word. The ratio of k and n gives rate R of the code. The coded bit
stream is then mapped to x = [x1, . . . , xn]1 and transmitted over a noisy channel.
We consider binary phase shift keying (BPSK) modulation where the BPSK sym-
bols xi are obtained from input symbols vi as xi = 2vi−1 ∈ {+1,−1}. Considering
an additive while Gaussian noise (AWGN) channel2, the received symbols have the
1 we consider here only binary channel encoders and binary bit mapping, and hence the input
and output length of the mapping block is of length n.
2 we consider mainly AWGN channel, however, a slowly-varying fading channel together with
AWGN is considered and detailed in Chapter 5.

5
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Figure 2.1: A communication system.

form,
yi = xi + ni , ∀ i = 1, . . . , n , (2.1)

where ni are independent and identically distributed Gaussian random variables
with zero mean and variance σ2 = N0/2, and N0 is the single sided power spectral
density of the noise. The signal-to-noise ratio (SNR) is defined in terms of Eb/N0,
where Eb is the average energy per information bit. On the receiver side, log-
likelihood ratios (LLRs) corresponding to the noisy received word y = [y1, . . . , yn]
are passed to the channel decoder that removes the redundancy added by the chan-
nel encoder and produces the estimates û of the information word u. The bit error
rate (BER) is calculated using a Monte Carlo method based on the information
word u and its estimate produced by the channel decoder û.

In general, any coding scheme can be compared against the limit of the channel,
otherwise known as Shannon limit. In terms of the channel parameter σ, we denote
the Shannon limit as σSh. Furthermore, we define σ∗ as a parameter for a code
that represents a unique channel parameter such that for channels with σ ≤ σ∗,
decoding succeeds with high probability and with channels σ > σ∗ decoding fails
with high probability. The σ∗ denotes the threshold of the code. The code is referred
as capacity approaching when σ∗ is close to σSh.

2.2 LDPC Codes

Low-density parity-check (LDPC) codes were first invented by Gallager in 1963
[Gal63] but had long been forgotten until they resurface in late 90’s. Gallager’s
LDPC codes were defined by sparse parity-check matrices H (of dimensionM×N)
that contained a fixed number ofK and J non-zero values in every row and column,
respectively, known as regular LDPC codes. It is due to the sparsity of the parity-
check matrix that these codes are called low-density codes. Alternatively, a regular
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LDPC code can be represented by using a bipartite graph (Tanner graph) consisting
of M check and N variable nodes with each of degree K and J , respectively. The
check nodes correspond to the set of parity-check constraints and the variable nodes
correspond to the code bits. Referring to the parity-check matrix, check nodes
and variable nodes represent the rows and columns of the parity-check matrix,
respectively. Each 1 in H represents an edge connecting the corresponding variable
and check node in the Tanner graph.

Definition 2.1. [Regular LDPC Code] A regular LDPC code is determined by the
condition that every code bit (variable node) participates in exactly J parity-check
constraints (check nodes) and every parity-check constraint (check node) involves
exactly K code bits (variable nodes). The resultant code is called (J,K)-regular
LDPC code. �

Since LDPC codes belong to a class of linear codes, every valid codeword must
satisfy the condition,

HvT = 0 , (2.2)

where T denotes transpose operation. By making use of (2.2), an encoder for an
LDPC code can be realized using the matrix H (see, e.g., [JFZ99]). The rate of the
resultant regular LDPC code can be given as,

R ≥ 1− J

K
, (2.3)

where the equality holds if and only if all the rows of matrix H are linearly inde-
pendent. An example of a (2, 3)-regular LDPC code represented by its parity-check
matrix H and the corresponding Tanner graph G = (C,V , E) is shown in Fig. 2.2.
Here, C = [c1, . . . , cM ] and V = [v1, . . . , vN ]3 denote the set of check and variable
nodes, respectively, and E is the set of edges in the Tanner graph. A check node is
represented by a square and a variable node by a circle.

Irregular LDPC Codes

LDPC codes have been adopted in various wireless communication standards, e.g.,
WiMAX, IEEE 802.11n, etc. Many of these standards use LDPC codes as an
optional choice together with turbo codes. However, recently in IEEE 802.11ad
standard [IEE14] LDPC codes have been considered as the only choice due to
3 since bits in a codeword are represented by variable nodes in a Tanner graph, we use the symbol
vi to denote the ith code bit and ith variable node.
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H =




1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0




(a) Parity-check matrix.

(b) Tanner graph.

Figure 2.2: An example of a (2, 3)-regular LDPC code.

their good performance and low complexity decoding over turbo codes, which is of
importance particularly when considering applications with high data rates. The
LDPC codes considered in the above mentioned standards are all irregular LDPC
codes, i.e., the nodes in the Tanner graph are allowed to have different node degrees.

Definition 2.2. [Irregular LDPC Code] An irregular LDPC code can have any
number of edges incident on a check or a variable node, i.e., the row or column
weight of the parity-check matrix is not constant. The resultant ensemble of an
irregular LDPC code can be characterized by edge perspective degree distribution
polynomials,

λ(x) =
∑

i

λix
i−1 and ρ(x) =

∑

j

ρjx
j−1 , (2.4)

where λi denotes the fraction of edges that are incident on degree-i variable nodes
and ρj denotes the fraction of edges incident on degree-j check nodes. �

For regular LDPC codes, it can be shown that there exists a noticeable gap between
the σ∗ and the σSh. However, this gap can be reduced when the node degrees are
optimized, i.e., the degree distribution for an irregular code is optimized using a
differential evolution algorithm [RSU01]. In general, such an optimization results
in a large fraction of degree-2 variable nodes (λ2). Although the degree-2 variable
nodes in the graph result in small structures which consequently help the decoding



2.2 LDPC Codes 9

process, these also lead to low-weight codewords and hence higher error floor at
large SNRs. Furthermore, the minimum distance of these optimized irregular codes
grows only sub-linearly with the code length because of the large fraction of low de-
gree variable nodes. As an example taken from [RSU01], the authors in [TJVW03]
observed an error floor slightly below BER = 10−6 for an irregular LDPC code.
Note that the irregular code designed in [RSU01] is 0.6 dB better in terms of
asymptotic performance (threshold) compared to their counterpart regular LDPC
code.

On the other hand, the regular codes constructed by Gallager enjoy the property
that their minimum distance grows linearly with the code length and thus asymp-
totically have very low error floors. In Section 2.3, using regular LDPC codes and a
technique known as spatial coupling, we show that performance can be pushed close
to the Shannon limit without compromising the linear minimum distance growth.
It is also important to mention here that with further optimization in the process
of code construction, the error floor of irregular LDPC codes can be lowered. How-
ever, code construction is not a main theme of this dissertation and hence we do
not consider designing and optimizing irregular LDPC codes. The techniques and
algorithms devised here are demonstrated on regular codes. However, without loss
of generality, these are applicable to irregular codes.

2.2.1 Structured LDPC Ensembles

In order to construct the parity-check matrix of an LDPC code, Thorpe in [Tho03]
introduced a template graph, otherwise known as protograph. The protograph
serves as a blue print for the parity-check matrix. A protograph is a small bi-
partite graph consisting of nc check and nv variable nodes and is represented by
its bi-adjacency matrix B, called base matrix. The base matrix consists of integer
values and the matrix H is obtained by using a graph lifting operation where each 1
in B is replaced by a Z×Z permutation matrix and each 0 by a Z×Z zero matrix.
The integer entries larger than 1 represent multiple edges between a pair of nodes
and are replaced by a sum of permutation matrices. The resultant parity-check
matrix consists of M = Znc check and N = Znv variable nodes. The permuta-
tion matrices can be generated using the progressive edge growth (PEG) algorithm
introduced in [HEA05] such that short cycles are avoided, wherever possible.

The protograph defines a code ensemble instead of a particular LDPC code. This
allow us to assess the performance of code ensemble, rather than the performance
of a single code. The graph lifting operation guarantees that the final code inherits
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properties of the protograph and thus protographs are very useful for analysis
purposes. The structured codes have many practical advantages including, but
not limited to, efficient hardware architectures for the encoders and decoders and
easy realization of puncturing for high rate codes [MLPCJ12]. Let us illustrate the
process of obtaining a parity-check matrix of an LDPC code from a protograph
with a help of an example.

Example 2.1. In this example, we start from a protograph with base matrix B
and demonstrate the graph lifting operation to obtain a parity-check matrix H.
Let us consider a protograph for a (2, 3)-regular LDPC code with nc = 4 check
nodes and nv = 6 variable nodes as,

B =




1 1 0 0 0 1
0 1 1 0 1 0
1 0 0 1 1 0
0 0 1 1 0 1



. (2.5)

The base matrix B, similar to parity-check matrix H, can be represented by a
Tanner graph. Now considering a lifting factor Z = 2, i.e., each 1 in B is replaced
by a 2× 2 permutation matrix and each 0 by a 2× 2 zero matrix. An example of
a resultant parity-check matrix with M = 8 check and N = 12 variable nodes is
given as,

H =




1 0 0 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 1 0




(2.6)

�

Note that the matrix in (2.6) only gives one possible realization of an ensemble
defined by protograph in (2.5). Another LDPC code using the same protograph
can be seen in Fig. 2.2(a). The graph lifting operation can also be visualized using
Z copies of the protograph and then permuting the edges between the nodes of the
same type. For more detail, interested readers are referred to [Tho03].
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cj
N (vk)\cj

Lvk,cj

Lch(vk)

(a)

cj

Lcj ,vk

vk
N (cj)\vk

(b)

Figure 2.3: Calculation of the LLRs along the edge (a) variable node
vk to check node cj and (b) check node cj to variable node vk.

2.2.2 Belief Propagation

As mentioned above, one of the benefits of having low density of ones in parity-
check matrix is that LDPC codes can be decoded using an iterative message passing
decoder. The decoding complexity increases with density of ones in H, hence a
low density is desirable. In case of the AWGN channel, messages in form of LLR
values are exchanged between check and variable nodes in every iteration. Since the
absolute value of an LLR represents the strength of our belief that its associated
variable node assumes a particular (binary) value, a decoder applying this message
passing algorithm is known as a belief propagation (BP) decoder. The calculation
of LLR values at each step of the iterative decoding is detailed below.

Let Lch(vk) denote the input channel LLR for variable node vk and N (vk) denotes
the set of check nodes connected to the variable node vk. Similarly N (cj) represents
the set of variable nodes connected to the check node cj. The extrinsic LLRs from
the variable node vk to the check node cj and from the check node cj to the
variable node vk are denoted as Lvk,cj and Lcj ,vk

, respectively, (see Fig. 2.3) and
are calculated as follows,

Lvk,cj = Lch(vk) +
∑

l∈N (vk)\cj

Lcl,vk
, (2.7)

Lcj ,vk
= 2 tanh−1


 ∏

l∈N (cj)\vk

tanh
(
Lvl,cj

2

)
 . (2.8)

Here N (vk)\cj represents the set of check nodes connecting to vk excluding cj. The
exclusion of cj here precludes the information received by vk from cj to be reused
to calculate the message Lvk,cj . Similarly, in (2.8) the variable node vk is excluded
while calculating the output message Lcj ,vk

.
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The iterative process continues until the symbols are decoded or the maximum
number of iterations Imax is reached. The output LLR Lout(vk) for variable node
vk is then computed as

Lout(vk) = Lch(vk) +
∑

l∈N (vk)
Lcl,vk

. (2.9)

In many practical scenarios it is advantageous to use an iteration stopping rule.
A stopping rule, using Lout, determines if the received word is correctly decoded
and stops the iterative process before the maximum number of iterations Imax is
performed. The most commonly used stopping rule for LDPC codes is to calculate
the syndrome s of the estimated codeword v̂ (s = Hv̂T ) 4. The iterative process
stops when s = 0, which indicates that a valid codeword is estimated. Note that
s = 0 only assures that v̂ is a valid codeword and it does not guarantee v̂ = v.
Additionally, there exists also an early stopping rule [LYL06], which stops the
iterative process earlier than Imax when it determines that the decoding will not
be successful. In this work we will only consider an iteration stopping rule and a
rule is proposed in Chapter 3 for the spatially coupled LDPC codes.

2.2.3 Density Evolution

In order to analyze the asymptotic performance of an iterative decoder, a tech-
nique known as density evolution is used 5. Density evolution tracks the probability
distribution of messages that are exchanged between nodes in the Tanner graph
[RSU01] in every iteration. The worst channel parameter for which the decoding
error probability converges to zero is refereed as the BP threshold of an ensemble.
For the case of the AWGN channel, we denote the BP threshold of an ensemble as
σ∗BP. Furthermore, we always consider protograph based LDPC codes and hence
apply density evolution equations on the considered protograph. The main advan-
tage of using protograph based LDPC codes is that it allows us to analyze the
performance of ensemble of codes instead of a particular LDPC code. The density
evolution equations are omitted here but interested readers are referred to [CRU01]
[RU08].

We make use of density evolution to calculate the BP thresholds of ensembles in
Chapter 3. Also density evolution is used to analyze the decoding process in Chap-
ter 4. In Chapter 5, density evolution is used to calculate the outage probability
4 v̂ is calculated by hard decision based on the output of (2.9).
5 here the term asymptotic refers to having infinite codeword length N , i.e., infinite lifting factor
Z.
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of a coded transmission over a slow time varying channel. The density evolution
results are always supported by simulation results where a PEG algorithm is used
to generate an LDPC code.

2.3 Spatially Coupled LDPC Codes

In order to push the BP threshold of an LDPC code close to the Shannon limit,
irregularity in the Tanner graph plays an important role. However, this is only at
the expense of high error floor. In this section we use a technique known as spatial
coupling to push the BP threshold of a regular LDPC code close to the Shannon
limit while guaranteeing the linear growth of the minimum distance.
Spatially coupled LDPC (SC-LDPC) codes were first invented by Jimenez Felström
and Zigangirov in [JFZ99]. Since these are characterized by a semi-infinite diagonal
type parity-check matrix, these were referred to as LDPC convolutional codes.
Analogous to LDPC codes, the parity-check matrix of an SC-LDPC code can also
be derived by protograph expansion (see Example 2.1).
In order to describe spatial coupling, let us consider a transmission of a sequence
of L codewords vt, t = 1, . . . , L, using a protograph based LDPC code. An es-
sential feature of SC-LDPC codes is that the blocks at different time instants are
interconnected. Instead of encoding all codewords independently, the blocks vt are
coupled by the encoder to other time instants. The largest distance between a pair
of coupled blocks defines the memory mcc of the coupled code. The coupling of
consecutive blocks can be achieved by distributing the edges from variable nodes
at time t among equivalent check nodes at times t + i, i = 0, . . . ,mcc, called an
edge spreading procedure [LFZCJ09]. The resultant regular SC-LDPC ensemble is
represented as (J,K, L,mcc).
In order to maintain the degree distribution and structure of the original proto-
graph, a valid edge spreading should satisfy the condition

mcc∑

i=0
Bi = B . (2.10)

Example 2.2. Consider a protograph of a (3, 6)-regular LDPC code with base
matrix B = [3 3] as shown in Fig. 2.4(a) and an edge spreading using the component
base matrices as

B0 = B1 = B2 = [1 1]. (2.11)

Here the ensemble has memory mcc = 2. The component matrix Bi represents the
connections between the variable nodes at time instant t and the check nodes at
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B

(a)

B0 B1 B2

(b)

v1 v2 v3 v4 v5 v6

(c)

Figure 2.4: An illustration of edge spreading for a protograph based
(3, 6)-regular LDPC code with base matrix B. The protograph is re-
peated L = 6 times and the edges are spread over time according to
the component base matrices B0, B1, and B2, resulting in a (3, 6, 6, 2)
SC-LDPC code.

time instant t+ i, as shown in Fig. 2.4(b). Finally, considering a termination length
of L = 6, the Tanner graph corresponding to the terminated spatially coupled code
is obtained as shown in Fig. 2.4(c).

�

A terminated SC-LDPC code can be described by means of a convolutional proto-
graph base matrix

B[1,L] =




B0(1)
... . . .

Bmcc(1) B0(L)
. . . ...

Bmcc(L)




(L+mcc)nc×Lnv

. (2.12)

The corresponding sequence of coupled code blocks forms a codeword v[1,L] =
[v1, . . . ,vt, . . . ,vL] of a terminated spatially coupled code. Here we always consider
time invariant protograph, i.e., the edge spreading does not change over time. Note
that mcc = 0, i.e., B0 = B in (2.12) corresponds to L LDPC block codes with
disconnected protographs.
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Based on the parity-check matrix of a terminated SC-LDPC code in (2.12), the
following two observations are made,

• Starting from a (J,K)-regular LDPC code, an asymptotically regular SC-
LDPC code is obtained with slight irregularity at both ends of the Tanner
graph. This results into low degree check nodes at both ends of the Tanner
graph. Since the check node update in (2.8) corresponds to a parity-check
code, a low degree check protects the connected code bits more strongly than
a high degree check node. This property of the SC-LDPC code is beneficial
for the decoding and will be further discussed in Section 2.3.1.

• The rate of a (J,K, L,mcc) regular coupled code with termination length L
and memory mcc is given by,

RL = 1−
(
L+mcc

L

)
J

K
. (2.13)

The mccnc additional check nodes result in a rate loss due to termination.
However, the rate loss diminishes with increasing termination length L.

2.3.1 Threshold Saturation

In this section, making use of density evolution, we calculate the BP thresholds
of protograph based LDPC and SC-LDPC codes. In general, it can be shown that
the maximum a posteriori (MAP) threshold of regular LDPC ensembles converges
to the Shannon limit when the node degrees are increased. On the other hand,
the BP threshold moves away from the Shannon limit with increasing degrees.
Table. 2.1 shows the BP thresholds of the LDPC codes when the variable node
degrees are increased from 3 to 56 for regular LDPC codes with rate R = 1/2. For
the case of LDPC block codes, the BP threshold degrades with increasing degrees.
As mentioned above, in order to close the gap between the BP threshold of regular
LDPC ensembles and the Shannon limit, the inclusion of degree-2 variable nodes
is indispensable, which induces an error floor.

In contrast to this, spatial coupling improves the performance of the iterative de-
coder significantly and it has been shown in [LSCJZ10] that the BP threshold of
the coupled code asymptotically approaches the MAP threshold of the underly-
ing LDPC code when the termination length L tends to infinity (see Fig. 2.5).
For small values of L, increasing the node degree has a negative effect on the BP
6 the corresponding check node degrees are increased from 6 to 10.
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Table 2.1: BP thresholds (σ∗BP) for LDPC and SC-LDPC codes with
increasing node degrees.

Code LDPC SC-LDPC
(L→∞)

(3, 6) 0.875 0.9477
(4, 8) 0.829 0.972
(5, 10) 0.783 0.9778

threshold, whereas, as L tends to infinity, the BP threshold of regular SC-LDPC
codes converge to the Shannon limit. The thresholds of the LDPC codes can also
be visualized in terms of Eb/N0 in Fig. 2.5(b). Here the rate of the code is taken
into account and the small value of L results in larger noise variance. However, the
behavior is similar to Fig. 2.5(a) when the termination length tends to infinity. The
Table 2.1 provides the BP threshold of the coupled LDPC code in the asymptotic
case. In contrast to uncoupled case, BP threshold of coupled code moves closer to
the Shannon limit with increasing node degrees.

This threshold saturation phenomenon was first observed by Lentmaier et.al. in
[LSCJZ10]. Later an analytical proof of threshold saturation has been given by
Kudekar, Richardson and Urbanke in [KRU10][KRU12]. A similar proof is extended
in [KYMP12] for protograph based codes using potential function.

Note that, with increasing variable node degrees from 3 to 5, memory has also been
increased from 2 to 4, respectively. This increase in memory is required to increase
the effect of coupling and hence increases the strength of the iterative decoder.
However, increasing memory of the code has consequences on the decoding latency
in multiple ways and shall be discussed in detail in Chapter 3.


