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KURZFASSUNG

Das Gebiet der biegsamen Elektronik erfidhrt sowohl von der Wissenschaft als
auch von der Industrie betrdchtliche Aufmerksamkeit, weil es das Potenzial hat
eine Vielzahl von Anwendungen nachhaltig zu beeinflussen. Zu diesen
Anwendungen gehoren tragbare Audiosysteme, biegsame Photovoltaik, biegsame
RFID tags, biegsame biomedizinische Sensoren, biegsame Displays und biegsame
Lautsprecher, denn solche Anwendungen konnen nicht mit herkémmlicher
waferbasierter Elektronik angegangen werden. Eine der vielversprechendsten
Transistortechnologien fiir biegsame Elektronik ist die der amorphen Indium-
Gallium-Zink-Oxid Diinnschichttransistoren (a-IGZO TFT). Diese Transistoren
zeigen interessante elektrische Eigenschaften und konnen bei niedrigen
Temperaturen hergestellt werden. Das ermoglicht es a-IGZO TFTs kostengiinstig
und auf biegsamen Substraten wie Plastefolie und Papier herzustellen. Die
Entwicklung von System-on-Chip (SoC), System-in-Package (SiP), organischer
und grofflachiger Elektronik (OLAE) sowie Elektronik auf unkonventionellen
Tragern hat heute sich zu einem interessanten Forschungsgebiet entwickelt.
Hauptgrund dafiir ist die feste physikalische Grenze fiir die weitere
Strukturverkleinerung der siliziumbasierten integrierten Schaltkreise, was zum
Ubergang von der Ara des Mooreschen Gesetzes zur Ara Beyond-Moore gefiihrt

hat.

Die beiden Hauptbeitrdge dieser Arbeit sind: Die Entwicklung eines
SPICE-Modells fiir a-IGZO TFTs und die Entwicklung von Verstérkerschaltungen
in a-IGZO TFT-Technologie fiir biegsame Anwendungen mithilfe dieses SPICE-
Modells. Um diese Anwendungen mit a-IGZO TFTs zu ermdglichen, ist die
Entwicklung von Schaltungen zur analogen Signalverarbeitung wie Verstirkern,

Oszillatoren und Datenkonvertern notwendig.

Als erster Schritt in Richtung biegsamer Elektronikanwendungen werden
Subsysteme wie Bewegungs- und Temperatursensoren sowie Analog- und
Hochfrequenz-schaltkreise entworfen. Vor der Fertigung dieser Schaltkreise
wurde ein Satz von Design Rule Checks (DRCs) durchgefiihrt, um eine

problemlose Fertigung zu garantieren. Diese DRCs garantieren die Funktionalitét
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der Schaltkreise selbst wenn sie bis zu einem Radius von nur 5 mm gebogen
werden. Mehrere Verstirkerschaltungen verschiedener Topologie wurden mit
diesem Prozess hergestellt. Einige der Topologien, wie der Cherry-Hooper-
Verstirker und die Verstirker mit induktiver Uberhdhung, wurden das erste Mal
in einer TFT-Technologie entwickelt. Insbesondere der Cherry-Hooper-Verstéirker
erreichte eine 3-dB-Bandbreite von 3.5 MHz, so dass ein Betrieb im MHz-Bereich

demonstriert werden konnte.



ABSTRACT

The field of flexible electronics is receiving considerable attention from scientific
and industrial communities because of its potential impact on a wide variety of
applications including wearable audio systems, flexible photovoltaics, flexible
RFID tags, flexible biomedical sensors, flexible displays, and flexible
loudspeakers, which cannot be addressed by conventional wafer-based electronics.
One of the most promising device developed for the flexible electronics
technology are the amorphous Indium-Gallium-Zink-Oxide thin-film transistors
(a-IGZO TFT). These devices show interesting electrical characteristics and can
be fabricated at low temperatures. These features allow the implementation of
a-IGZO TFTs on flexible substrates such as plastic foil or paper, and also enables
cost effective manufacturing. The development of systems on a chip (SOC),
system in a package (SIP), organic and large-area electronics (OLAE), and
electronics on unconventional substrates has become an interesting research area
nowadays, mainly due to the inevitable down-scaling limit on silicon-based
electronic devices which has led to the transition from the era of Moore’s law to

the beyond Moore era.

This thesis presents two major ideas: First, a development of a SPICE
model for a-IGZO TFTs, and second being design of TFT amplifier circuits
targeting flexible electronics applications, using the developed model. To enable
such applications with a-IGZO TFTs, the development of analog processing

circuits, such as amplifiers, oscillators, and data converters, are needed.

As the first step toward the development of flexible electronics
applications, subsystems like motion and temperature sensors, analog and radio
frequency (RF) circuits are designed. Prior to the fabrication of these circuits, a set
of design rule checks (DRCs) were performed for manufacturability. These DRCs
guarantee the functionality of the circuits even when the flexible substrates are
bent to a radius of 5 mm. Several amplifiers with different topologies were
fabricated using this process. Some topologies like Cherry-Hooper amplifier and

amplifier using inductive peaking technique are developed for the first time in TFT

vi
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technology. The Cherry-Hooper amplifier in particular exhibited a 3 dB bandwidth

of 3.5 MHz, thereby demonstrating operation in the megahertz regime.
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Chapter 1: Introduction

1 INTRODUCTION

1.1 Motivation

Transparent electronics is a rapid growing field that has gained a lot of attention
and interest from researchers in academic and industrial areas around the world,
especially in the last decade. This motivation was mainly maintained by the first
report on thin-film transistors (TFTs) for transparent electronics published
in [1]-[3], all of them employed a Zink-Oxide (ZnO) as the channel layer material.
One year later, Nomura et al. reported the successful work on the fabrication at
room-temperature of transparent TFTs on flexible substrates using an amorphous
Indium-Gallium-Zink-Oxide (a-IGZO), as the active layer material [4]. This active
layer demonstrates higher carrier mobility in comparison to the other amorphous
semiconductors employed in TFTs, namely hydrogenated amorphous silicon thin-
film transistor (a-Si:H TFT) which is largely used in solar cells and flat panels.
Later, the flexible electronics technology has been improved to a certain level of

performance that promises to change the daily life of people all over the world.

Due to these researchers’ works, mechanically flexible and therefore
bendable devices can be integrated as a bendable electronic system for wearable
devices, textiles, or healthcare equipment, and therefore lead to a wider
functionality of everyday objects [5],[6]. In addition, quite new flexible
applications such as bendable displays, bendable loudspeakers, or smart RFID

(radio-frequency identification) tags seem to be possible for realization.
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Regardless of the device bendability, flexible electronics introduces two additional
benefits in comparison to the standard silicon technology. First, the fabrication
process can be proceed in lower temperatures that make possible the use of flexible
substrates such as plastic and paper. Therefore size and weight are not comparable
with the available single crystalline semiconductor wafers. Second, bendability of
the flexible large scale substrates leads roll to roll (R2R) fabrication method.
However, it has to be mentioned that the operational stability and operational
frequency of TFTs and complexity of TFT circuits cannot compete with circuits in
semiconductor wafers. By the way, this technology is still not matured and needs
to be improved, and as the moment of writing this thesis, several improvements

proposals are being investigated on this subject.

Today, most TFT-based applications are largely limited to digital circuits.
However, it is also necessary to consider circuit designs in analog domains to fill
the gap between the analog and digital worlds. This can only be achieved with
circuits that can handle analog signals with comparable performance and reliability
level as those designed and implemented in digital subsystems. Some valuable
works have been carried out in recent years concerning mechanical and electrical

performance improvement of a-IGZO TFTs, and analog circuit designs [6],[7].

This thesis investigates and describes a collection of amplifier circuit
topologies and techniques for its use in analog signal processing with special
requirements for targeted applications such as: flexible AM (amplitude
modulation) shortwave radio receive, printed loudspeaker driver, On-Off Keying

(OOK) receiver, temperature sensor, and motion sensor.

1.2 Scope of Application

This work was partly funded by the European Commission, under project
FLEXIBILTY (Flexible Multifunction Bendable Integrated Light-Weight Ultra-
Thin Systems) and the German Research Foundation (DFG) within the Organic
Path Cluster of Excellence “Center for Advancing Electronics Dresden”. The goal
of the FLEXIBILITY project [8],[9] is advancing the competitiveness of Europe

in the area of multifunctional, ultra-lightweight, ultra-thin, bendable thin-film and
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Table 1-1: Participants and main tasks

TECHNISCHE
UNIVERSITAT TUD Coordination, audio amplifier, broadcast and data radios
DRESDEN

e Enfuc ELL ENF | Primary batteries

m! TUC [ R2R printing and fabrication, speakers, audio oscillator

SI EM ENS SIE Sensor systems and packaging

m ETH IGZO thin film technology and fabrication

EX@JD U S EXO | Wireless streaming platform e.g. for advertisements and web page

CESOLUTIONS

DATA
CONTR
SYSTEMS

DCS Sensor platforms e.g. for security and food

Smartex SMA | Textile integration, wearable audio system, and packaging

u VARTA VAR | Secondary batteries e.g. rechargeable batteries

KON | Solar cells e.g. OPV to battery interface electronics

WT VTT | Touch screen and user interfaces
@©BELECTRIC’ : ;
ey BEL | Solar cells e.g. OPV to battery interface electronics

organic large area electronic systems (TOLAE). With TOLAE, technology
systems can be fabricated on a simple piece of plastic foil or even paper resulting
in low fabrication costs per area [9]. Developed TOLAE components consist of
disposable and rechargeable batteries, organic solar cells, DC charging electronics,
printed piezoelectric loudspeakers, flexible audio amplifiers, analog signal

generators, temperature and motion sensors, receiver circuits, and touch screens.

There were several partners from Austria, Finland, Germany, Italy, Greece
and Switzerland in FLEXIBILITY involved dealing with the different aspects of

the entire approach. Table 1-1 summarizes the participants and their main tasks.
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‘Wearable audio system

Packaging: textile integration using joined foil/printed & woven

connections verification & test platform: SMA
Touch. Broaqc%ist _» { Pre-distortion: ' Amplifier: é_,fioudspeaker:é

| S TJSdIE-THg TUD, TUC, ETH; *TUD, TUC, ETH "¢ TUC |
? Sound module, joined substrate, e.g. PET

[ Rechargeable secondary battery: VAR ] Disposable

primary battery:

[ Charging electronics: KON, TUD, ETH ] ENF

ik . .

[ Solar cells: KON, BEL ] Option to regenerative

supply

_ Regenerative DC supply, joined foil carrier

Fig. 1-1: System architecture of the flexible wearable audio system.

The FLEXIBILITY group has access to a large number of flexible
technologies suitable to implement a wide range of functional electronic systems
for flexible or wearable applications: disposable and rechargeable batteries,
organic FET transistors (OFETSs), flexible TFTs, flexible temperature and motion
sensors, printed organic LEDs (OLEDs) and touch screens, textile and printed
antennas, and textile integration technology. The project aimed at designing and
implementing mechanically flexible multifunctional systems such as AM
shortwave radio receiver for wearable applications or integrating components in
packaged flexible systems. The main goal of the FLEXIBILITY is further
improvement in developing all the available technologies to facilitate their
integration into bendable or flexible wearable systems, making them electrically
and functionality adaptable each with all others [9]. In FLEXIBILITY, three of
such systems were proposed as a planning phase of the project for showing the
potential of the consortium technologies [9],[10]: 1) Textile integrated audio
module with integrated AM shortwave radio, and solar supply; 2) wireless
streaming of audio data and advertising by active receiver tag; 3) motion or
temperature sensor for soft book. Fig. 1-1 represents the architecture of the audio

module with broadcast radio receiver which is the most critical application in this
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project. The system includes various integrated flexible modules, which are a

broadcast radio receiver and a sound module with driving electronics.

For the implementation of such mechanically flexible system, the features
of various low-cost TOLAE technologies are integrated. Microscale (down to
2 um), fast (transit frequency>200 MHz, carrier mobility >7.5 cm?V-!s)
a-IGZO TFT [11] technology allows wireless communication systems. The R2R
printing method is used for elements requiring large areas such as piezoelectric
loud speakers, high-power OFETs, solar cells, and 3-D integration, as well as
implementation of heterogeneous devices on one single substrate. Scalable model
templates and therefore design-kits in advance design CAD tools are developed
for simulating and drawing layout to enable efficient circuit development.
Interface and packaging challenges are studied for full system integration on one

flexible plastic foil with maximum bending radius of 5 mm.

1.3 Objectives and Structures
This work presents a structured approach for the design of several amplifiers using
TFT technology for targeted applications in the project. Key points of

investigations are as follows:

o Thin-film transistors: The electrical properties of the a-IGZO TFT,
the device structure, and its manufacturing process are introduced.

e Modeling: AC and DC characteristics of a-IGZO TFTs are performed,
and a TFT-based model template is introduced and developed for circuit
designs, as well as drawing layouts of the circuits.

e Design and theory: Several technologies of amplifiers are
introduced in the frame of defined applications in FLEXIBILTY project.
Methods for designing of all major blocks for the targeted systems are
presented. The limitations of technology which have effects on the circuit
performance are introduced. Then, such these topologies are developed in
order to be able to reduce these effects such as the effect of threshold
voltage shift in a-IGZO TFTs due to constant biasing. Finally, a fully

integrated wearable audio system including a complete AM radio receiver
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and loudspeaker driver systems, charging electronics, and textile antenna is

developed, which combines all analog and digital building blocks.

The focus of this work is on circuit designs. It is not intended to provide a thorough
discussion on device fabrication, technology limitations, and device modeling
which are reported mostly by previous works [6],[7]. However, it is necessary for
verification of the whole system; a TFT model template is developed and applied,
but the detailed procedure is described only as much as necessary for general

understanding.

1.4 Thesis Outline

This thesis is structured as follows:

e Chapter 2 provides a theoretical background regarding the subjects of
a-IGZO semiconductor operation, transistor basics, and device structure.
Moreover, limitations of the a-IGZO technology is introduced.

e Chapter 3 is devoted to the SPICE model template based on a-IGZO TFT,
and implemented in an advanced design simulator written in behavioral
language Verilog-A. DC and AC parameters have also been extracted for
several single a-IGZO TFTs. The DC RPI-aTFT model has been developed
and adapted to the a-IGZO TFTs to take scalability of the device into
account. A higher-order AC approximation model is also introduced to
improve the simulation of a-IGZO TFT behavior at high frequencies. In
addition, layouts of the components which are fabricated based on this
technology such as transistors, resistors and capacitors will be introduced.
All of these concepts are presented in this chapter in order to familiarize the
reader to some of the specific topics that were involved in the work.

e Chapter 4 provides the methodology behind the design process of the
amplifier, circuit classifications, and the measurement setup.

o Chapter 5 provides the design of integrated circuits, circuit analyses, and
their measurement results in detail. Furthermore, the measurement results

are compared with the similar published works in TFT technology.
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Chapter 6 is the final chapter of this work. It presents the conclusions
which are achieved from the work, proposals for future improvement of the
proposed topologies, and potential applications that can be constituted using

the produced amplifiers.
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Chapter 2: Transistor Basics

2 TRANSISTOR BASICS

2.1 Introduction

Thin-film transistors (TFTs) using a-IGZO technology have been fabricated on a
free-standing polyimide foil. They are based on bottom-gate structure, which
isolates the channel from the substrate. These two structural aspects make TFT
device electrical characteristics independent of the substrate bias voltage, which is
an advantage compare to metal-oxide-semiconductor field-effect transistor

(MOSFET).

The device structure and electrical properties are described in the

following sections:

2.2 Device Structure

Fig. 2-1 presents the corresponding cross section of the bottom-gate a-IGZO TFT
fabricated on a 50 pm-thick (Kapton E from DuPont) free-standing polyimide foil,
which has no electric influence on the device operation. The device is fabricated
by standard ultraviolet (UV) lithography. The channel material is not embedded in
the substrate, and instead deposited in the semiconductor material on top of the

substrate.

In this work three types of a-IGZO TFT are used: High frequency (HF)
self-aligned and non-self-aligned a-IGZO TFT, and high power (HP) a-IGZO TFT.

11
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S  8mmALO; D

10nm Ti,
60nm Au, I 25nm AL O, I
10nm Ti

50nm SiNy

50pm Polyimide
50nm SiNy

Fig. 2-1: The device cross section of bottom-gate a-IGZO TFT including layer materials
and thicknesses.
At the moment, the available oxide semiconductor TFT technology only provides

n-type TFTs.

The non-self-aligned a-IGZO device is fabricated using five photography

masks (five-layer process). The device is manufactured as follows [12]:

As it was mentioned above, a 50 um-thick polyimide foil is used as
flexible substrate. A 50 nm-thick SiNyx is deposited on both sides of the substrate
to increase the adhesion between the substrate and all other material layers by
PECVD. A 35 nm-thick Chromium (Cr) is used to fabricate the gate contact in
order to provide a better adhesion in comparison to the most other metals. A
25 nm-thick (80 nm for HP a-IGZO TFTs) Al2Os is deposited as a gate insulator,
which can provides a high dielectric & =9.5. The gate insulator is fabricated by
ALD with the highest temperature of 150°C. Then, a 15 nm-thick semiconductor
(amorphous IGZO) is sputtered in room temperature. A 10 nm-thick Titanium (T1)
and a 60 nm-thick gold (Au) are used to fabricate the source and drain contacts.
Finally, passivation of the device is done by deposition of the additional 25 nm-

thick layer of Al,Os.

Self-alignment of the source and drain contacts has been used to fabricate
shorter channel length devices up to 0.5 um, and a gate-to-source / drain overlap
(Lov) of 1.5 um [13]. However, Loy in the non-self-aligned technology for HF and
HP TFTs are 5 pmand 15 pm, respectively. The fabrication process of self-aligned
a-IGZO TFTs are the same as non-self-align devices, however, Ti is used to
fabricate the gate contact, and Cr and Au are used to fabricate gate and drain

contacts. Comparable to standard silicon technology, self-alignment can be



