René Habendorf

Vorentzerrung für die räumlich überlagerte Kommunikation mit verteilten Empfängern

Beiträge aus der Informationstechnik

René Habendorf

Vorentzerrung für die räumlich überlagerte Kommunikation mit verteilten Empfängern

Dresden 2008

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2008

Die vorliegende Arbeit stimmt mit dem Original der Dissertation "Vorentzerrung für die räumlich überlagerte Kommunikation mit verteilten Empfängern" von René Habendorf überein.

Besuchen Sie uns im Internet: www.vogtverlag.de

© Jörg Vogt Verlag 2008 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor Printed in Germany

ISBN 978-3-938860-21-2

Jörg Vogt Verlag Niederwaldstr. 36 · 01277 Dresden

Telefon: +49-(0)351-31403921 Telefax: +49-(0)351-31403918 Email: info@vogtverlag.de Technische Universität Dresden

Vorentzerrung für die räumlich überlagerte Kommunikation mit verteilten Empfängern

René Habendorf

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Helmut Schreiber

Gutachter: Prof. Dr.-Ing. Gerhard Fettweis Tag der Einreichung: 14.07.2008 Prof. Dr.-Ing. Karl-Dirk Kammeyer Tag der Verteidigung: 25.11.2008 Prof. Dr. Andreas Fischer

Abstract

Next generation mobile communications systems will include signal processing concepts where one or multiple cooperating network entities transmit jointly to decentralized noncooperating mobile receivers. In such a scenario, multiple antennas at the transmitter side allow to exploit the spatial diversity, enabling several parallel data streams to be transmitted to different users sharing the same frequency band and time instant, which results in a significant increase in spectral efficiency. This thesis focuses on transmitter-side pre-equalization techniques for the joint signal processing necessary to mitigate multiuser interference in such scenarios.

Linear pre-equalization is mainly based on minimizing the mean square error between the transmitted and received signal, and thus on reconstructing the modulated symbol sequence. A nonlinear optimization scheme is presented, which computes the transmit signal by minimizing the mean bit error probability at the receiver output directly. The method exploits the degrees of freedom given by the outer constellation symbols for efficient interference mitigation.

Following the paradigm of dirty paper coding, the application of a modulo operation at the receivers realizes a cyclic extension of the signal constellation. Precoding techniques for modulo detectors perform a tree search to select appropriate signal representations out of this cyclically extended constellation. However, an optimum precoding results in a complexity which increases exponentially in the number of dimensions. By incorporating the statistical properties of modulo arithmetic in tree search algorithms, significant improvements are obtained regarding the complexity-performance tradeoff. In case of high spatial correlation, the application of lattice basis reduction methods significantly increases the performance in systems with an upper bounded complexity.

The performance of transmitter-side pre-equalization in combination with channel coding in the context of frequency selective channels is relevant for practical implementation. It is shown that nonlinear precoding for cyclic extended constellation regions yields superior results.

The channel reciprocity necessary to realize transmitter-side channel state information in time division duplex systems usually does not hold in practice due to different analog frontends at both sides of the communication link. Thus, practical implementations require transceiver calibration. Robust pre-equalization techniques are proposed which incorporate the statistical properties of imperfect transceiver calibration into the design of the precoding filters. An important problem in multicarrier systems is the high dynamic range which degrades the efficiency of RF components at transmitter and receiver and leads to an increased hardware cost. The nonlinear precoding is extended by an algorithm to decrease signal peaks and thus reduce the signal dynamics exploiting alternative equivalent signal representations in the cyclic extended modulo-constellation.

Kurzfassung

Im Mittelpunkt der Arbeit stehen Verfahren zur sendeseitigen Vorentzerrung für die drahtlose Datenübertragung von einem Sender zu mehreren nicht kooperierenden Empfängern. Ein praktischer Anwendungsfall ist die Abwärtsstrecke eines Mehrnutzer-Kommunikationssystems mit zentralen Zugangsknoten wie z. B. Mobilfunksysteme oder *Wireless Local Area Network* (WLAN)-Netze.

Bei der *linearen* Vorentzerrung werden häufig indirekte Kenngrößen für die Übertragungsqualität, wie z. B. der mittlere quadratische Fehler der vom Detektor beobachteten modulierten Symbole, optimiert. In der Arbeit werden das Kriterium einer *direkten* sendeseitigen Minimierung der Bitfehlerrate unter Ausnutzung der Randbereiche begrenzter Signalkonstellationen untersucht und effiziente Methoden für die rechentechnische Umsetzung entwickelt.

Dem Paradigma der *Dirty Paper*-Codierung folgend wird in der *nichtlinearen* Vorcodierung eine zyklisch erweiterte Konstellation durch den Einsatz einer Modulo-Operation am Eingang des Detektors realisiert. Der Entwurf effektiver Verfahren zur Berechnung eines vorentzerrten Sendesignals für Modulo-Empfänger bildet einen weiteren Schwerpunkt dieser Arbeit. Es werden Baumsuchverfahren für eine effiziente Lösung des Gitter-Decodierproblems zur Bestimmung optimaler Signalrepräsentanten in der erweiterten Konstellation untersucht. Durch Anpassung der Baumsuche an die statistischen Eigenschaften der Modulo-Operation können erhebliche Verbesserungen des Verhältnisses von Aufwand und Komplexität erzielt werden.

Für den Einsatz der sendeseitigen Vorentzerrung in praktischen Systemen ist deren Leistungsfähigkeit in Verbindung mit Kanalcodierung und frequenzselektiven Mobilfunkkanälen entscheidend. Es wird gezeigt, dass die nichtlineare Vorcodierung für zyklisch erweiterte Konstellationen sehr gute Ergebnisse erzielt. In Verbindung mit räumlich korrelierten Kanälen kann die Leistungsfähigkeit der Vorcodierung zudem durch Anwendung der Gitterbasisreduktion erheblich gesteigert werden.

Die für die Realisierung der sendeseitigen Kanalkenntnis in TDD-Systemen gewünschte Reziprozität des Übertragungskanals ist in praktischen Systemen aufgrund unterschiedlicher Sende- und Empfangskomponenten im Allgemeinen nicht gegeben und erfordert entsprechende Kalibrierungsmethoden. In der Arbeit wird eine robuste Vorentzerrung unter Einbeziehung der statistischen Eigenschaften des Kalibrierungsfehlers entworfen.

In Mehrträgersystemen stellt der große Dynamikbereich hohe Anforderungen an die Hochfrequenzkomponenten der Sender und Empfänger. Daher wird ein auf die Vorcodierung aufbauendes Verfahren zur Reduzierung der Spitzenleistung in Mehrträgersystemen unter Ausnutzung der zyklisch erweiterten Konstellation vorgestellt. Numerische Ergebnisse zeigen eine erhebliche Reduktion des Dynamikbereichs.

Vorwort

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Vodafone Stiftungslehrstuhl Mobile Nachrichtensysteme der Technischen Universität Dresden. Ich möchte mich an dieser Stelle ganz herzlich bei Professor Gerhard Fettweis für die Ermöglichung und Betreuung der Promotion sowie die zahlreichen wertvollen Anregungen bedanken. Herrn Professor Karl-Dirk Kammeyer und Professor Andreas Fischer gilt mein besonderer Dank für die Anfertigung der Gutachten sowie ihr reges Interesse an meiner Arbeit.

Allen Kollegen und Freunden am Vodafone Stiftungslehrstuhl danke ich für die angenehme Zeit sowie das fruchtbare fachliche Umfeld, welches sehr zur erfolgreichen Erstellung dieser Arbeit beigetragen hat. In besonderem Maße haben daran Dr. Wolfgang Rave, Dr. Ernesto Zimmermann und Dr. Ralf Irmer Anteil.

Auf dem Gebiet der numerischen Optimierung hatte ich hervorragende Unterstützung durch Professor Andreas Fischer und Fred Richter von der Fachrichtung Mathematik der TU Dresden. Ihnen danke ich für die vielen wertvollen Diskussionen, die mich in der Erschließung dieses Themenbereichs sehr vorangebracht haben.

Ebenso gilt mein Dank der Deutschen Forschungsgemeinschaft (DFG) für die Förderung weiter Teile dieser Arbeit im Rahmen des Schwerpunktprogramms AKOM (Adaptivität in heterogenen Kommunikationsnetzen mit drahtlosem Zugang).

Bedanken möchte ich mich auch bei den zahlreichen Studenten, die ich während meiner Promotionszeit betreuen durfte. Ich freue mich besonders, dass die von mir betreuten Diplomstudenten Ines Riedel, Fred Richter und Jörg Holfeld nun als wissenschaftliche Mitarbeiter am Vodafone Stiftungslehrstuhl ebenfalls die Promotion anstreben.

Für das Korrekturlesen früherer Versionen dieser Arbeit bin ich meiner Kollegin Ines und meinen Kollegen Ernesto, Wolfgang, Fred, Steffen und Patrick für die investierte Zeit und ihre hilfreichen Kommentare sehr zu Dank verpflichtet.

Nicht zuletzt möchte ich mich bei meiner Familie und meinen Freunden bedanken, die mich all die Jahre großartig unterstützt haben. Ein ganz besonderer Dank gilt meiner lieben Cornelia für ihr unerschöpfliches Verständnis während der gesamten Promotionsphase. Die gemeinsame Zeit mit ihr gab mir immer wieder Aufmunterung und innere Kraft für die Fertigstellung dieser Arbeit.

Dresden, im November 2008

Inhaltsverzeichnis

A	${ m Abstract/Kurz fassung}$					i	
D	Danksagung v						\mathbf{v}
A	bbild	ungsve	erzeichnis				x
Ta	abelle	enverze	eichnis				xiv
A	bkür	zungsv	verzeichnis				xv
Ve	erzeio	chnis d	der verwendeten Symbole			х	viii
1	\mathbf{Ein}	leitung	S				1
	1.1	Gliede	erung			•	2
	1.2	Notati	ion				2
2	Gru	ndlage	en				5
	2.1	System	mmodell				8
		2.1.1	Modulation				8
		2.1.2	MIMO-Kanalmodell				9
		2.1.3	Störabstandsmaß				13
	2.2	Äquiva	alentes reellwertiges Systemmodell				13
	2.3	Sendes	seitige Kanalkenntnis				14
		2.3.1	Kanalreziprozität in TDD-Systemen				14
		2.3.2	Sendeseitige Kanalkenntnis durch Feedback			•	15
3	Vor	entzer	rung für lineare Empfänger				17
	3.1	Linear	re Vorentzerrung				17
		3.1.1	Matched Filter (TxMF)				18
		3.1.2	Zero-Forcing-Sendefilter (TxZF)				19
		3.1.3	Wiener Sendefilter (TxWF)				21
		3.1.4	Leistungsfähigkeit der linearen Vorentzerrung				24
	3.2	Optim	nierung des Sendesignals mit Restriktionen				25
	3.3	Optim	nierung des Empfangssignals mit Restriktionen				30

		3.3.1	Konvexität der Zielfunktion	32
		3.3.2	Konvexität der zulässigen Menge	33
		3.3.3	Globales Optimum	34
		3.3.4	Lagrange-Funktion und KKT-Bedingungen	35
		3.3.5	Lösung durch das Trust-Region-Dogleg-Verfahren	38
	3.4	Optim	nerung des Sendesignals ohne Restriktionen	43
		3.4.1	Mehrvalente Modulation	45
	3.5	Optim	ierung des Empfangssignals ohne Restriktionen	47
	3.6	Nume	rische Ergebnisse	49
	3.7	Zusan	menfassung	57
4	Vor	entzer	rung für nichtlineare Modulo-Empfänger	59
	4.1	Grund	llagen der Dirty-Paper-Codierung	59
		4.1.1	Übertragung mit periodisch fortgesetztem Signalalphabet	63
	4.2	Nichtl	inearer Modulo-Empfänger	66
	4.3	Modul	lo-Rückkopplungsstrukturen	68
	4.4	Tomli	nson-Harashima-Vorcodierung	70
		4.4.1	Zero-Forcing-TH-Vorcodierung	70
		4.4.2	Wiener-Filter-TH-Vorcodierung	72
		4.4.3	Vorcodierung mit sortierter Matrix-Zerlegung	72
		4.4.4	Leistungsfähigkeit der TH-Vorcodierung	77
		4.4.5	Anmerkungen zur komplexwertigen TH-Vorcodierung $\ . \ . \ . \ .$	81
	4.5	Vektor	r-Vorcodierung	83
		4.5.1	Linearisiertes Modell der Vorcodierung für Modulo-Empfänger	83
		4.5.2	Zero-Forcing-Vektor-Vorcodierung	84
		4.5.3	Wiener-Filter-Vektor-Vorcodierung	85
		4.5.4	Gitter-Decodierproblem und Baumsuchverfahren	88
		4.5.5	Vektor-Vorcodierung mit Gitterbasisreduktion	89
	4.6	Leistu	ngsfähigkeit der Vektor-Vorcodierung	93
	4.7	Verall	gemeinerte Struktur der nichtlinearen Vorcodierung	97
		4.7.1	Implementierungsaspekte	98
	4.8	Baum	suchverfahren für die Vektor-Vorcodierung mit reduzierter Komplexität	101
		4.8.1	Terminologie der Baumsuchverfahren	101
		4.8.2	Enumerationsstrategie	103
		4.8.3	Klassifizierung der Baumsuchverfahren	104
		4.8.4	Reduzierung der mittleren Komplexität der Tiefensuche	105
		4.8.5	Vektor-Vorcodierung mit begrenzter Komplexität	117
	4.9	Zusan	nmenfassung	124

5	Syst	temspe	zifische Aspekte	127
	5.1	Vorent	zerrung bei nicht idealer Transceiver-Kalibrierung	127
		5.1.1	Erweitertes Kanalmodell	128
		5.1.2	Lineare Vorentzerrung bei nicht idealer Kalibrierung	132
		5.1.3	Vorentzerrung für Modulo-Empfänger bei nicht idealer Kalibrierung	134
		5.1.4	Simulationsergebnisse	134
	5.2	Vorent	zerrung für CDMA-Systeme	136
	5.3	Vorent	zerrung für OFDM-Systeme	137
		5.3.1	OFDM-Systemmodell	137
		5.3.2	Vorentzerrung und Kanalcodierung	138
		5.3.3	Vektor-Vorcodierung mit reduziertem PAPR	144
6	Zus	ammer	ıfassung	151
A	Mat	hemat	ische Grundlagen und Herleitungen	155
	A.1	Matrix	cinversionslemma	155
	A.2	Wirtin	ger Kalkül	155
		A.2.1	Cauchy-Riemannsche Differenzierbarkeitsbedingungen	155
		A.2.2	Wirtinger-Ableitung	156
	A.3	Funkti	onsapproximationen	158
		A.3.1	Exponential funktion	158
		A.3.2	Komplementäre Gaußsche Fehlerfunktion	159
	A.4	Linear	e Vorentzerrung	161
		A.4.1	Herleitung des ZF-Sendefilters TxZF	162
		A.4.2	Herleitung des Wiener Sendefilters TxWF	163
В	Nur	nerisch	ne Optimierung	165
	B.1	Optim	ierung ohne Restriktionen	165
		B.1.1	Optimalitätsbedingungen	167
		B.1.2	Linienoptimierung	167
		B.1.3	Bestimmung der Suchrichtung	170
		B.1.4	Trust-Region-Verfahren	175
	B.2	Nichtli	neare Optimierung mit Restriktionen	180
		B.2.1	Quadratische Programmierung	183
		B.2.2	Sequentielle Quadratische Programmierung (SQP)	184
\mathbf{Li}	terat	urverz	eichnis	184
Li	terat	urverz	eichnis des Autors	207

Abbildungsverzeichnis

2.1	Konfigurationen von Mehrantennensystemen	6
2.2	Blockschaltbild eines Mehrnutzer-Systems in der Abwärtsstrecke	8
2.3	Signalraumdiagramm der 4-/16-QAM-Modulation	9
2.4	Verteilungsfunktion der Konditionszahl κ für räumlich korrelierte Kanäle,	
	$U=N_t=4$	12
3.1	Systemmodell der linearen Vorentzerrung	17
3.2	Bitfehlerrate der linearen Vorentzerrung, $U = N_t = 2, 4$ -/16-QAM	24
3.3	Bitfehlerrate der linearen Vorentzerrung, $U = N_t = 4, 4$ -/16-QAM	24
3.4	Verzerrtes unverrauschtes Empfangssymbol \check{d} am Eingang des Entscheiders	25
3.5	Entscheidungsgebiete der Inphasenkomponente einer Gray-codierten 4-	
	QAM-Modulation	27
3.6	Wahrscheinlichkeitsdichte des verrauschten reellwertigen Empfangssymbols	27
3.7	Systemmodell MinBER-tc	28
3.8	Systemmodell MinBER-rc	33
3.9	Systemmodell MinBER-tu	43
3.10	Entscheidungsgebiete für die Inphasenkomponente einer Gray-codierten 16-	
	QAM-Modulation	47
3.11	Systemmodell MinBER-ru	48
3.12	Bitfehlerrate der numerischen BER-Optimierung, $U = N_t = 4, 4$ -QAM .	51
3.13	Bitfehlerrate der numerischen BER-Optimierung, $U = N_t = 4$, 16-/64-QAM	51
3.14	Bitfehlerrate der numerischern BER-Optimierung, $U = N_t = 8, 4$ -/16-QAM	52
3.15	Iterativer Fortschritt der Bitfehlerrate bei numerischer BER-Optimierung,	
	$U = N_t = 8, 4$ -QAM	53
3.16	Iterativer Fortschritt der Bitfehlerrate bei numerischer BER-Optimierung,	
	$U = N_t = 8, 16$ -QAM	54
3.17	Signalraumdiagramme für lineare Vorentzerrung (TxWF) und Minimierung	
	der BER (MinBER-tu)	55
3.18	Bitfehlerrate der numerischen BER-Optimierung mit limitierter Iterations-	
	anzahl, $U = N_t = 4$, 16-QAM	56
3.19	Bitfehlerrate der numerischen BER-Optimierung mit limitierter Iterations-	
	anzahl, $U = N_t = 8$, 16-QAM	56

4.1	Systemmodell eines AWGN-Kanals mit zusätzlicher, dem Sender bekannter, additiver Interferenz	60
4.2	Signalraumdiagramm der 4-ASK-Konstellation und des zyklisch erweiterten4-ASK-Signalalphabets	63
4.3	Vereinfachte Darstellung der Dirty-Paper-Codierung	64
4.4	Blockschaltbild der Quantisierungs- und Modulo-Operation	67
4.5	Allgemeines Systemmodell der Vorcodierung für dezentralisierte Modulo- Empfänger	67
4.6	Effektives Signalraumdiagramm der 4-QAM-Modulation für konventionelle und Modulo-Empfänger	68
4.7	Blockschaltbild der Modulo-Matrix-Inversion	69
4.8	Blockschaltbild der Modulo-Matrix-Multiplikation	69
4.9	Blockschaltbild der Tomlinson-Harashima-Vorcodierung	71
4.10	Bitfehlerrate der Tomlinson-Harashima-Vorcodierung, $U=N_t=4$, 16-QAM .	78
4.11	Bitfehlerrate der Tomlinson-Harashima-Vorcodierung, $U=N_t=4$, 4-/64-QAM	78
4.12	Bitfehlerrate der Tomlinson-Harashima-Vorcodierung, $U=N_t=8, 16$ -QAM .	79
4.13	Bitfehlerrate der Tomlinson-Harashima-Vorcodierung, $U=N_t=8$, 4-/64-QAM	79
4.14	Einfluss der sortierten Matrixzerlegung auf die Bitfehlerrate der Tomlinson-	
	Harashima-Vorcodierung, $U=N_t=4$, 16-QAM	80
4.15	$\label{eq:main} \mbox{Mittlerer quadratischer Fehler der Tomlinson-Harashima-Vorcodierung} . .$	81
4.16	Bitfehlerrate der reellwertigen und komplexwertigen Tomlinson-Harashima-	
	Vorcodierung, $U=N_t=4$, 16-QAM, THP-ZF	82
4.17	Bitfehlerrate der reellwertigen und komplexwertigen Tomlinson-Harashima- Vorcodierung, $U=N_t=4$, 16-QAM, THP-WF	82
4.18	Linearisiertes Modell der Vektor-Vorcodierung	83
4.19	Blockschaltbild der Zero-Forcing-Vektor-Vorcodierung (VP-ZF)	84
4.20	Blockschaltbild der Wiener-Filter-Vektor-Vorcodierung (VP-WF)	87
4.21	Einfluss der Gitterbasis reduktion auf die Verteilungsfunktion der Konditionszahl κ	90
4.22	Blockschaltbild der Vektor-Vorcodierung mit Gitterbasisreduktion (VP-LR)	91
4.23	Blockschaltbild der Vektor-Vorcodierung mit Gitterbasisreduktion: Roun-	
	ding- Off -Approximation (VP-RO)	92
4.24	Blockschaltbild der Vektor-Vorcodierung mit Gitterbasisreduktion: Nearest-	
	Plane-Approximation (VP-NP)	92
4.25	Bitfehlerrate der Vektor-Vorcodierung sowie Babais Näherungslösungen, $U=N_t=4$	93
4.26	Bitfehlerrate der Vektor-Vorcodierung sowie Babais Näherungslösungen, $U=N_t=8$	94
4.27	Bitfehlerrate der Vektor-Vorcodierung sowie Babais Näherungslösungen, $U=4, N_t=\{4, 5, 6\}, 16$ -QAM	95

4.28	Leistungsfähigkeit von Babais Nearest-Plane-Approximation in der Vektor-	
	Vorcodierung bei räumlich korrelierten Kanälen, $U=N_t=8$, 16-QAM	96
4.29	Verallgemeinerte Struktur der Näherungslösungen der Vektor-Vorcodierung	97
4.30	Verallgemeinerte Struktur der Vektor-Vorcodierung	98
4.31	Elemente der Baumsuche	102
4.32	Schnorr-Euchner-Enumeration	104
4.33	Analytische und numerisch ermittelte Wahrscheinlichkeitsdichtefunktion	
	und Verteilungsfunktion der Metrik des restlichen Teilpfades	109
4.34	Leistungsfähigkeit der Vektor-Vorcodierung mit prognostiziertem Suchradi-	
	us, $U=N_t=8$, 16-QAM	110
4.35	Leistungsfähigkeit der Vektor-Vorcodierung mit prognostiziertem Suchradi-	
	us, $U=N_t=8$, 16-QAM, vergrößerte Darstellung	111
4.36	Leistungsfähigkeit der Vektor-Vorcodierung mit prognostiziertem Suchradi-	
	us bei räumlich korrelierten Kanälen, $U=N_t=8$, 16-QAM	113
4.37	Aufwand der Baumsuche VP-PSR, $K=16$ Layer	114
4.38	Aufwand der Baumsuche VP-PSR, $K=32$ Layer	115
4.39	Mittlere Anzahl von vertikalen Pfaderweiterungen je Layer, $K = 16$ Layer.	115
4.40	Kumulative Verteilungsfunktion der vertikalen Pfaderweiterungen in der	
	Wiener-Filter-Vektor-Vorcodierung, $K=16$ Layer	116
4.41	Bitfehlerrate der Zero-Forcing-Vektor-Vorcodierung mit M-Algorithmus,	
	$U=N_t=8, 16$ -QAM	119
4.42	Bitfehlerrate der Wiener-Filter-Vektor-Vorcodierung mit M-Algorithmus,	
	$U=N_t=8, 16$ -QAM	119
4.43	Maximale Komplexität der Tiefen- (VPS) und Breitensuche (VPM), $\chi=2$.	120
4.44	Performance der Zero-Forcing-Vektor-Vorcodierung mit begrenzter Komple-	
	xität. $U=N_t=8$. 16-QAM	121
4.45	Performance der Wiener-Filter-Vektor-Vorcodierung mit begrenzter Kom-	
	plexität, $U=N_t=8$, 16-QAM	122
4.46	Performancegewinn durch Anwendung der Gitterbasisreduktion bei der	
-	Wiener-Filter-Vektor-Vorcodierung mit begrenzter Komplexität, $U=N_t=8$,	
	16-QAM	122
4.47	Performance der Vektor-Vorcodierung mit begrenzter Komplexität bei	
	räumlich korrelierten Kanälen, $U=N_t=8$, 16-QAM	123
5.1	Extrinsischer Ubertragungskanal mit mehreren Sende- und Empfangsantenne	n128
5.2	Sende- und Empfangszweitor in der Abwärtsstrecke	129
5.3	Sende- und Empfangszweitor in der Aufwärtsstrecke	129
5.4	Blockschaltbild des erweiterten Kanals mit reziprokem extrinsischen Kanal	
	sowie BS- und MS-Transceivern in Abwärtsrichtung	130
5.5	Bitfehlerrate der linearen und nichtlinearen Vorentzerrung mit BS-	
	Kalibrierungsfehler, $U=N_t=4$, 16-QAM	135

5.6	Bitfehlerrate der linearen und nichtlinearen Vorentzerrung mit BS-	
	Kalibrierungsfehler, $U=4$, $N_t=6$, 16-QAM	135
5.7	Vorentzerrung für dezentralisierte Empfänger eines CDMA-Systems, Spreiz-	
	faktor 16, 16-QAM	136
5.8	Blockschaltbild der OFDM-Übertragungsstrecke	138
5.9	Blockfehlerrate eines WIGWAM-Systems mit $U=N_t=4$, Wiener-Filter-Vor-	
	entzerrung	141
5.10	Blockfehlerrate eines LTE-Systems mit $U=N_t=4$, Wiener-Filter-Vorentzer-	
	rung, unkorrelierte Kanäle	143
5.11	Blockfehlerrate eines LTE-Systems mit $U=N_t=4$, Wiener-Filter-Vorentzer-	
	rung, korrelierte Kanäle	143
5.12	Blockfehlerrate der Vorentzerrung bei nicht idealer Kalibrierung,	
	WIGWAM-System, $U=N_t=4$, 16-QAM	144
5.13	Komplementäre Verteilungsfunktion der Unterträgeranzahl mit mindestens	
	einem alternativen Repräsentanten bei Verwendung der Tiefensuche	147
5.14	PAPR verschiedener Vorcodierungs-Verfahren, $U=N_t=4$, $N_d=48$, $N_f=64$.	148
5.15	PAPR verschiedener Vorcodierungs-Verfahren, $U=N_t=4$, $N_d=596$, $N_f=1024$	148
5.16	Bitfehlerrate der Vektor-Vorcodierung mit reduziertem PAPR, $U=N_t=4$,	
	$N_{\rm d}$ =596, $N_{\rm f}$ =1024	149
A.1	Komplementäre Gaußsche Fehlerfunktion und Taylor-Approximation	160
A.2	Komplementäre Gaußsche Fehlerfunktion und Tschebyscheff-Approximation	161
B.1	Armijo-Bedingung	169
B.2	Krümmungsbedingung	170
B.3	Wolfe-Bedingungen	171

Tabellenverzeichnis

Kohärenzzeit für verschiedene Geschwindigkeiten und Trägerfrequenzen	15
Methoden für die Filterberechnung der nichtlinearen Vorcodierung Maximal erlaubte Anzahl vertikaler Pfaderweiterungen	99 120
Parameter der untersuchten OFDM-Systeme	139
Rechenregeln der Wirtinger-Ableitung	157
Wirtinger-Ableitungen nach einem Vektor	157
Wirtinger-Ableitungen nach einer Matrix	157
Reellwertige Ableitungen nach einer Matrix	158
Koeffizienten für die Approximation der komplementären Gaußschen Feh-	
lerfunktion	160
	Kohärenzzeit für verschiedene Geschwindigkeiten und Trägerfrequenzen Methoden für die Filterberechnung der nichtlinearen Vorcodierung Maximal erlaubte Anzahl vertikaler Pfaderweiterungen Parameter der untersuchten OFDM-Systeme Rechenregeln der Wirtinger-Ableitung Wirtinger-Ableitungen nach einem Vektor Wirtinger-Ableitungen nach einer Matrix Reellwertige Ableitungen nach einer Matrix Koeffizienten für die Approximation der komplementären Gaußschen Fehlerfunktion

Abkürzungsverzeichnis

Bedeutung
3rd Generation Partnership Project
Automatic Gain Control
Diskrete Amplitudenmodulation, engl.: Amplitude Shift Keying
Additives Weißes Gaußsches Rauschen, engl.: Additive White Gaussian Noise
Bitfehlerrate engl: Bit Error Rate
Bit-Interleaved Coded Modulation
Verteilungsfunktion, engl.: Cumulative Distribution Function
Codegeteilter Mehrfachzugriff, engl.: Code Division Multiple Ac-
cess
Gitter-Decodierproblem, engl.: Closest Vector Problem
Zyklische Erweiterung des Sendesignals bei OFDM-Systemen, engl.: Cyclic Prefix
Entscheidungsrückgekoppelte Entzerrung, engl.: Decision Feed- back Equalization
Dirty-Paper- (Vor-) Codierung, Costa- (Vor-) Codierung, engl.:
Dirty-Paper Coding
Frequenzduplex, engl.: Frequency Division Duplex
Blockfehlerrate bei codierter Ubertragung, engl.: Frame Error Rate
Schnelle Fourier-Transformation
Global System for Mobile Communications
Gleichheitsnebenbedingung(en)
Institute of Electrical and Electronics Engineers, Inc.
Unabhängig und identisch verteilt, engl.: independent and identi-
cally distributed
Inverse Schnelle Fourier-Transformation
Intersymbol-Interferenz, engl.: Intersymbol Interference
Linear Independence Constraint Qualification
Gitterbasisreduktion, engl.: Lattice Reduction
Long Term Evolution

Abkürzung	Bedeutung
KKT	Karush-Kuhn-Tucker
NP	Nearest-Plane-Approximation bei der Vektor-Vorcodierung mit
	Gitterbasisreduktion
MAI	Mehrnutzer-Interferenz, engl.: Multiple Access Interference
MIMO	Multiple Input Multiple Output
MISO	Multiple Input Single Output
MinBER-MUT	Minimum Bit Error Rate Multiuser Transmission
MinBER-rc	MinBER, Optimierung des Empfangssignals mit Restriktionen
MinBER-ru	MinBER, Optimierung des Empfangssignals ohne Restriktionen
MinBER-tc	MinBER, Optimierung des Sendesignals mit Restriktionen
MinBER-tu	MinBER, Optimierung des Sendesignals ohne Restriktionen
ML	Maximum Likelihood
MMSE	Minimaler MSE
MSE	Mittlerer quadratischer Fehler, engl.: Mean Square Error
MUT	Multiuser Transmission
OFDM	Orthogonales Frequenzmultiplex, engl.: Orthogonal Frequency Di-
OFDMA	Mehrfachzugriff mit orthogonalen Unterträgern, engl.: Orthogo- nal Frequency Division Multiple Access
PAPR	Verhältnis von Spitzen- und Durchschnittsleistung, engl.: Peak- to-Average Power Ratio
PDF	Wahrscheinlichkeitsdichtefunktion, engl.: Probability Density Function
PMEPR	Verhältnis von Spitzen- und Durchschnittsleistung, engl.: Peak- to-Mean Envelope Power Ratio
PSK	Diskrete Phasenmodulation, engl.: Phase Shift Keying
QAM	Quadratur-Amplituden-Modulation, engl.: <i>Quadrature Amplitude</i> <i>Modulation</i>
QoS	Quality of Service
QP	Quadratische Programmierung
RO	<i>Rounding-Off-</i> Approximation bei der Vektor-Vorcodierung mit Gitterbasisreduktion
RRM	Funkressourcenmanagement, engl.: Radio Resource Management
RxMF	Empfangsseitiges angepasstes Filter, engl.: Receive Matched Filter
RxWF	Wiener Empfangsfilter, engl.: Receive Wiener Filter
RxZF	ZF Empfangsfilter, engl.: Receive Zero-Forcing
S	Matrixzerlegung mit S-Sortierung (z.B. SLQD)
SINR	Signal-zu-Störverhältnis, engl.: Signal to Interference and Noise Ratio

ABKÜRZUNGSVERZEICHNIS

Abkürzung	Bedeutung
SIMD	Single Instruction Multiple Data
SISO	Single Input Single Output
SLQD	Sortierte LQ-Zerlegung, engl.: Sorted LQ Decomposition
SNR	Signal-zu-Rausch-Verhältnis, engl.: Signal to Noise Ratio
SQP	Sequentielle Quadratische Programmierung
SVD	Singulärwertzerlegung, engl.: Singular Value Decomposition
TDD	Zeitduplex, engl.: Time Division Duplex
TDMA	Zeitgeteilter Mehrfachzugriff, engl.: <i>Time Division Multiple Access</i>
THP	Tomlinson-Harashima-Vorcodierung, engl.: <i>Tomlinson-Harashi-</i> ma Precoding
TSWG	Technical Support Working Group
TxMF	Sendeseitiges angepasstes Filter, engl.: Transmit Matched Filter
TxWF	Wiener Sendefilter, engl.: Transmit Wiener Filter
TxZF	ZF Sendefilter, engl.: Transmit Zero-Forcing
U	Unsortierte Matrixzerlegung (z.B. LQD)
UNB	Ungleichheitsnebenbedingung(en)
V	Matrixzerlegung mit V-Sortierung (z.B. VLQD)
V-BLAST	Vertical Bell Labs Layered Space Time
VP	Vektor-Vorcodierung, engl.: Vector Precoding
VP-PPR	Vektor-Vorcodierung für OFDM-Systeme mit reduzierter Spitzen-
	leistung
VP-PSR	Vektor-Vorcodierung mit prognostiziertem Suchradius
WF	Lineare Sende- bzw. Empfangssignalverarbeitung nach dem MMSE-Kriterium, engl.: <i>Wiener-Filter</i>
WIGWAM	Wireless Gigabit With Advanced Multimedia support
WINNER	Wireless world INitiative NEw Radio
WLAN	Drahtloses lokales Netzwerk, engl.: Wireless Local Area Network
WMAN	Wireless Metropolitan Area Network
ZF	Vollständige Interferenzunterdrückung, engl.: Zero-Forcing

Verzeichnis der verwendeten Symbole

Operatoren und Funktionen

\mathbb{N}	Menge der natürlichen Zahlen, $\mathbb{N} = \{1, 2, 3, \ldots\}$
\mathbb{N}_0	Menge der natürlichen Zahlen und der Zahl 0, $\mathbb{N}_0 = \{0, \mathbb{N}\}$
\mathbb{R}_+	Menge aller nichtnegativen reellen Zahlen $\{x \in \mathbb{R} \mid x \ge 0\}$
\mathbb{R}_{++}	Menge aller positiven reellen Zahlen $\{x \in \mathbb{R} \mid x > 0\}$
≡	Äquivalenz
	Definition
\in	Element von
∇	Nabla-Operator
$\frac{\mathrm{d}}{\mathrm{d}x}$	Ableitung nach der Variablen x
$\frac{\partial}{\partial r}$	partielle Ableitung nach der Variablen x
\odot	elementweise Multiplikation zweier Matrizen/Vektoren
\otimes	Kronecker-Produkt
·	Absolutwert eines Skalars
[·]	Rundung einer reellen Zahl auf die nächstkleinere natürliche Zahl
[.]	Rundung einer reellen Zahl auf die nächstgrößere natürliche Zahl
$\left\lceil \cdot \right\rfloor$	Rundung einer reellen Zahl auf die nächste natürliche Zahl
[a,b)	Menge aller $x \in \mathbb{R}$ mit $a \leq x < b$
$\left\ \cdot\right\ _{2}$	l^2 -Norm bzw. euklidische Norm
$\left[{f M} ight]_{a,b}$	Element in der a-ten Zeile und b-ten Spalte der Matrix ${f M}$
$[\mathbf{M}]_{a.:}$	a-te Zeile der Matrix \mathbf{M}
$[\mathbf{M}]_{:,b}$	b-te Spalte der Matrix \mathbf{M}
$[\mathbf{M}]_{a_1:a_2,b_1:b_2}$	Teilmatrix von M mit den Elementen aus den Zeilen a_1 bis a_2 von
	Spalte b_1 bis b_2
$(\cdot)^*$	komplexe Konjugation
$(\cdot)^T$	Transponierte einer Matrix
$(\cdot)^H$	Transjugierte einer Matrix
$(\cdot)^{-1}$	Inverse einer Matrix
$(\cdot)^{\dagger}$	Pseudo-Inverse einer Matrix
$(\cdot)^{-T}$	Transponierte der Inversen einer Matrix
$(\cdot)^{-H}$	Transjugierte der Inversen einer Matrix
arg max	Argument, das den folgenden Ausdruck maximiert

rgmin	Argument, das den folgenden Ausdruck minimiert
$\operatorname{card}\left(\cdot\right)$	Kardinalität bzw. Mächtigkeit einer Menge
$\delta_{ m KR}$	Kronecker-Delta
$\det\left(\cdot\right)$	Determinante einer Matrix
$\operatorname{diag}\left\{\cdot\right\}$	diag-Operator: bildet einen Vektor auf eine Diagonalmatrix ab
$\operatorname{diag}_{n=a,\dots,b} \{f(n)\}$	diag $\{[f(a), \ldots, f(b)]\}$
$\operatorname{diag}^{-1}\left\{\cdot\right\}$	inverser diag-Operator: bildet die Hauptdiagonale einer quadratischen Matrix auf einen Spaltenvektor ab
$dg\left\{\cdot\right\}$	dg-Operator dg $\{\cdot\}$ = diag $\{\text{diag}^{-1} \{\cdot\}\}$: setzt alle Nebendiagonal- elemente einer quadratischen Matrix zu Null
$\dim\left(\cdot\right)$	Dimension eines Vektorraumes
dom	Domäne bzw. Definitionsbereich einer Funktion
$\operatorname{erfc}\left(\cdot\right)$	komplementäre Gaußsche Fehlerfunktion
$\mathcal{E}\left\{ \cdot ight\}$	Erwartungswert
$\exp\left(\cdot\right)$	Exponential function zur Basis e
$\Im\left\{ \cdot ight\}$	Imaginärteil
$\operatorname{int}\left(\cdot ight)$	Inneres bzw. Menge aller inneren Punkte
$\ker\left(\cdot\right)$	Kern bzw. Nullraum einer Abbildung
$\operatorname{ld}\left(\cdot\right)$	Logarithmus zur Basis 2 (dualer Logarithmus)
$\lg\left(\cdot ight)$	Logarithmus zur Basis 10 (dekadischer Logarithmus)
$\ln\left(\cdot ight)$	Logarithmus zur Basis e (natürlicher Logarithmus)
$\operatorname{mod}_{\lambda}\left\{\cdot\right\}$	Modulo-Operation zur Basis λ
	$\operatorname{mod}_{\lambda}\left\{x\right\} = x - \left\lfloor \frac{x}{\lambda} + \frac{1}{2} \right\rfloor \lambda$
$\Pr\left\{\cdot\right\}$	Wahrscheinlichkeit
$Q_{\lambda}\left\{\cdot\right\}$	Quantisierung auf ein Element der Menge $\lambda \mathbb{Z}$
	$Q_{\lambda}\left\{x\right\} = \left\lfloor \frac{x}{\lambda} + \frac{1}{2} \right\rfloor \lambda$
$\Re\left\{\cdot ight\}$	Realteil
$\mathrm{rank}\left(\cdot ight)$	Rang einer Matrix
$\operatorname{sgn}\left\{\cdot\right\}$	Vorzeichen (signum), $sgn \{0\} = 0$
$\operatorname{span}\left(\cdot\right)$	durch das Argument aufgespannter Vektorraum
$\mathrm{tr}\left(\cdot ight)$	Spur einer Matrix
$\operatorname{vec}_{n=a,\dots,b}\left\{f(n)\right\}$	vec-Operator: generiert den Spaltenvektor $[f(a), \ldots, f(b)]^T$

Symbole

In der folgenden Liste sind häufig verwendete Skalare, Vektoren und Matrizen aufgeführt. Weitere Definitionen sind an den betreffenden Stellen im Text zu finden. Die hier dargestellten Vektoren und Matrizen sind auf das äquivalente reellwertige Systemmodell beschränkt. Ihre komplexwertigen Pendants sind durch einen Unterstrich (<u>.</u>) gekennzeichnet und sind analog den reellwertigen Variablen zu interpretieren.

0_m	m imes 1 – Nullvektor
1_m	$m \times 1$ – Einsvektor
d	Datensymbole
ď	Datensymbole am Eingang des Entscheiders ohne additives Rau-
	schen
$ ilde{ extbf{d}}$	Datensymbole am Eingang des Entscheiders, überlagert durch ad-
	ditives Rauschen
$\underline{\mathbb{D}}_{M}$	Signalalphabet der M -stufigen QAM
$\mathbb{D}_{\sqrt{M}}$	Signalalphabet der \sqrt{M} -stufigen ASK, das im reellwertigen Sy-
	stemmodell das Signalalphabet der M -stufigen QAM repräsentiert
\mathbf{e}_m	m'-te Spalte der dem Kontext entsprechenden Einheitsmatrix
E_{Tx}	mittlere Sendeenergie
G	Skalierungsmatrix (reellwertige Diagonalmatrix)
H	Kanalmatrix
Ă	für MMSE-Vorentzerrung erweiterte Kanalmatrix
	$\check{\mathbf{H}} = [\mathbf{H} \ , \ \sqrt{lpha} \mathbf{I}]$
Ħ	Platzhalter für die Kanalmatrix H oder die erweiterte Kanalma-
	$\operatorname{trix}\check{\mathbf{H}}$
\mathbf{I}_m	$m \times m$ – Einheitsmatrix
L	Lagrange-Funktion
\mathbf{L}	normierte linke untere Dreiecksmatrix
K	Anzahl der Layer in der nichtlinearen Vorcodierung
M	Modulations index (z. B. M -QAM)
\mathcal{M}	Listengröße der Breitensuche der Vektor-Vorcodierung (VPM)
n	Additives Weißes Gaußsches Rauschen (AWGN)
$N_{ m d}$	Anzahl der für die Datenübertragung verwendeten Unterträger bei
	OFDM-Systemen
$N_{ m f}$	Länge der FFT bei OFDM-Systemen
$N_{ m p}$	Länge der zyklischen Erweiterung (Cyclic Prefix) bei OFDM-
	Systemen
N_t	Anzahl der Antennen an der Basisstation
\mathcal{O}	Sortierung (Liste von Indizes)
р	Verschiebungsvektor in der nichtlinearen Vorcodierung

\mathbf{Q}	Matrix mit orthonormalen Zeilen
$R_{\rm c}$	Coderate
s	Sendesymbole
Т	unimodulare Transformationsmatrix der Gitterbasisreduktion
U	Anzahl der aktiven Nutzer
${\cal U}_{ m tr}$	Vertrauensbereich der Trust-Region-Verfahren
U	unimodulare Matrix zur Vorkonditionierung des Gitter-Decodier- problems
V	sendeseitiges Filter für die lineare Vorentzerrung
V	Voronoi-Region
W	Quasi-Newton-Matrix
x	Symbole am Ausgang der Rückkoppelstruktur bei der nichtlinea- ren Vorcodierung
ý	Empfangssymbole ohne additives Rauschen
$ ilde{\mathbf{y}}$	Empfangssymbole, überlagert durch additives Rauschen
Ζ	durch den Verschiebungsvektor ${\bf p}$ überlagerte Datensymbole
β	Skalierungsfaktor für die Einhaltung einer mittleren Sendeenergie
Γ	Generatormatrix eines Gitters
$ar{\Gamma}$	Gitterbasis-reduzierte Matrix
Δ	mit nichtnegativen Elementen besetzte Diagonalmatrix
ϵ	mittlerer quadratischer Fehler (MSE)
ϑ	Anzahl vertikaler Pfaderweiterungen in der Baumsuche
κ	Konditionszahl einer Matrix $\kappa = \frac{\sigma_{\max}(\underline{\mathbf{H}})}{\sigma_{\min}(\underline{\mathbf{H}})} \ge 1$
λ	Breite des Modulo-Intervalls in der nichtlinearen Vorcodierung
Λ	Modulo-Gitter
ν	Index eines Symbolintervalls
ξ	Parameter (Schwellwert) der VP-PSR-Verfahren
	Hilfsterm bei der Herleitung der Wiener-Filter
Π	unitäre Permutationsmatrix
ρ	Korrelationskoeffizient $(0 \le \rho \le 1)$
	Radius in der Baumsuche
$ ho_{ m R}$	Koeffizient für empfangsseitige Korrelation
$ ho_{ m T}$	Koeffizient für sendeseitige Korrelation
Υ	(Pfad-)Metrik der Baumsuchverfahren
Φ	Kovarianz- bzw. Korrelationsmatrix
χ	maximale Anzahl an Nachfolgern je Knoten in der Baumsuche

Kapitel 1

Einleitung

Die drahtlose Übertragung digitaler Daten ist eine wesentliche Grundlage für die Abdeckung des stetig steigenden Bedarfs an Mobilität und Erreichbarkeit in unserer Gesellschaft. Neben der Telefonie und dem Austausch von Textnachrichten ist die breitbandige Kommunikation von multimedialen Inhalten mit ständig steigender Datenrate zu einer Selbstverständlichkeit im Alltag vieler Menschen geworden. Der Transfer großer Datenmengen über Funk wird hierbei durch die Entwicklung immer leistungsfähigerer Massenspeicher und deren Einsatz in verschiedensten Endgeräten wie z. B. Mobiltelefonen, Digitalkameras und tragbaren Computern in Zukunft weiter erheblich ansteigen.

Da die für die drahtlose Kommunikation zur Verfügung stehenden physikalischen Ressourcen begrenzt sind und darüber hinaus vom Gesetzgeber reglementiert werden, ist die effiziente Ausnutzung *aller* sich bietenden Freiheitsgrade für die Realisierung zukünftiger Kommunikationssysteme unabdingbar. In den letzten Jahren ist in diesem Zusammenhang die räumlich überlagerte Übertragung mit Mehrantennen-Systemen zu einem eigenständigen und vielversprechenden Forschungsgebiet gereift. Durch Ausnutzung verschiedener, gering korrelierter räumlicher Ausbreitungspfade können mehrere Signale im gleichen Frequenzband zur gleichen Zeit übertragen werden. Verfahren für die Entzerrung der durch die Überlagerungen der einzelnen Ausbreitungspfade hervorgerufenen Störungen setzen meist eine gemeinsame Verarbeitung aller Empfangssignale voraus. Dies ist jedoch in der Abwärtsstrecke von einem zentralen Sender zu mehreren verteilten Empfängern nicht möglich. Ein solches Szenario tritt aber in der Praxis relativ häufig auf. Als Beispiele sind hier die zellularen Mobilfunksysteme sowie WLAN-Netze (*Wireless Local Area Network*) zu nennen.

Die sendeseitige Signalverarbeitung ermöglicht in der Abwärtsstrecke neben der räumlichen geschichteten Übertragung zu verteilten Nutzern den Einsatz *einfacher* Empfängerstrukturen. Grundlage hierfür ist die Verlagerung der komplexen Verfahren zur Entzerrung des Mehrantennen-Kanals auf den in Abwärtsrichtung leistungsfähigeren Sender. Dieser ist als Basisstation bzw. *Access Point* nicht auf Batterien zur Energieversorgung angewiesen. Des Weiteren unterliegen zentrale Sender hinsichtlich Größe und Herstellungskosten erheblich weniger strengen Auflagen als die für den Massenmarkt zu produzierenden mobilen Endgeräte.

Gegenstand dieser Arbeit ist daher die Untersuchung von sendeseitigen Signalverarbeitungsverfahren für die Abwärtsstrecke von einem zentralen Sender zu nicht kooperierenden Empfängern. Ziel hierbei ist es, das Sendesignal *vor* dem Absenden so zu modifizieren, dass nach der Übertragung über den Kanal möglichst störungsfreie Signale von den verschiedenen Empfängern beobachtet werden. Der Kanal arbeitet nach diesem Prinzip gewissermaßen als Entzerrer für die durch die sendeseitige Signalverarbeitung hervorgerufenen "Störungen". In Anlehnung an den Begriff der empfangsseitigen Entzerrung werden die sendeseitigen Verfahren unter der Bezeichnung *Vorentzerrung* zusammengefasst.

1.1 Gliederung

Die Arbeit ist in folgende Abschnitte gegliedert:

In Kapitel 2 werden das dieser Arbeit zugrunde liegende Systemmodell sowie häufig verwendete Variablen eingeführt.

Kapitel 3 befasst sich mit der Vorentzerrung für konventionelle lineare Empfänger. Neben den konventionellen linearen Vorentzerrungsfiltern wird mit der *Minimum Bit Error Rate Multiuser Transmission* ein Ansatz zur direkten sendeseitigen Minimierung der Bitfehlerrate untersucht. Im Mittelpunkt steht hierbei die Weiterentwicklung der Min-BER-Verfahren hinsichtlich höherwertiger Modulation sowie die Reduzierung der rechentechnischen Komplexität der Optimierungsalgorithmen.

In Kapitel 4 wird die Vorcodierung für nichtlineare Modulo-Empfänger untersucht. Die diskutierten Verfahren basieren auf dem Paradigma der *Dirty Paper*-Codierung und der hierfür eingeführten äquivalenten Signaldarstellung durch Restklassen-Arithmetik. Der Schwerpunkt dieses Kapitels liegt auf der Reduzierung der Komplexität der Vektor-Vorcodierung sowie der Bewertung verschiedener suboptimaler Ansätze hinsichtlich der bei begrenztem Aufwand erreichbaren mittleren Leistungsfähigkeit.

In Kapitel 5 wird die sendeseitige Vorentzerrung unter systemspezifischen Aspekten wie nicht idealer Kanalreziprozität sowie Verwendung von Kanalcodierung untersucht. Des Weiteren wird eine Erweiterung der Vektor-Vorcodierung zur Reduktion des Dynamikbereichs von Mehrträgersystemen entwickelt.

Kapitel 6 fasst die wichtigsten Ergebnisse der Arbeit zusammen.

1.2 Notation

Im Folgenden werden einige grundlegende Definitionen hinsichtlich der in dieser Arbeit verwendeten mathematischen Notation aufgeführt. Eine ausführliche Auflistung ist in dem auf Seite (xviii) beginnenden Operatoren- und Funktionsverzeichnis dargestellt.

• Die Mengen der ganzen, der reellen sowie der komplexen Zahlen werden mit \mathbb{Z} , \mathbb{R} und \mathbb{C} bezeichnet. $\mathbb{R}^{m \times n}$ beschreibt die Menge aller $m \times n$ -dimensionalen reellwertigen

Matrizen und $\mathbb{R}^m = \mathbb{R}^{m \times 1}$ die Menge aller *m*-dimensionalen reellwertigen Spaltenvektoren.

- Kursiv gedruckte Buchstaben (x) beschreiben skalare Variablen, wohingegen Vektoren durch fett gedruckte Kleinbuchstaben (\mathbf{x}) und Matrizen durch fett gedruckte Großbuchstaben (\mathbf{X}) gekennzeichnet sind. $\mathbf{0}_m$ sowie $\mathbf{1}_m$ beschreiben jeweils einen *m*dimensionalen Spaltenvektor, dessen sämtliche Elemente identisch Null beziehungsweise identisch Eins sind. Entsprechend wird die $m \times n$ -dimensionale Null- / Einsmatrix durch $\mathbf{0}_{m \times n}$ / $\mathbf{1}_{m \times n}$ dargestellt. Die $m \times m$ -dimensionale Einheitsmatrix wird mit \mathbf{I}_m bezeichnet, deren *n*-ter Spaltenvektor mit \mathbf{e}_n . Die Dimension von \mathbf{e}_n wird nicht explizit angegeben, sondern geht aus dem jeweiligen Kontext hervor.
- Der Operator $[\mathbf{M}]_{m_1:m_2,n_1:n_2}$ greift auf die durch die Zeilen m_1 bis einschließlich m_2 und die Spalten n_1 bis einschließlich n_2 gebildete Teilmatrix von \mathbf{M} zu. Die erste Zeile bzw. Spalte wird mit 1 nummeriert. Die Adressierung der *m*-ten Zeile von \mathbf{M} erfolgt mit $[\mathbf{M}]_{m_i}$, die der *n*-ten Spalte entsprechend mit $[\mathbf{M}]_{::n}$.
- Die Operationen \mathbf{M}^* , \mathbf{M}^T und \mathbf{M}^H beschreiben die komplex Konjugierte, die Transponierte sowie die Transjugierte der Matrix \mathbf{M} . Die Inverse von \mathbf{M} wird mit \mathbf{M}^{-1} bezeichnet und \mathbf{M}^{-T} sowie \mathbf{M}^{-H} beschreiben die Transponierte bzw. die Transjugierte von \mathbf{M}^{-1} .
- Vektoren und Matrizen des komplexwertigen Systemmodells sind durch einen Unterstrich (<u>·</u>) gekennzeichnet.