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CHAPTER 

1 

Introduction 
 

 

Welding processes are the most used manufacturing methods for many production 

queues, for example in automotive industries. In laser beam welding (LBW), the 

material melt is generated by a focused laser beam, which is nowadays one of the 

highest available power density sources (up to 1010-1012 Wm
-2) [1]. At these high 

power densities it is possible to weld at higher processing speeds, to reduce the heat 

affected zone, and to obtain narrow weld seams.  

The rapid improvement in laser welding equipment has been challenging engineers to 

develop advanced automatic control strategies of the process. Indeed, laser beam 

welding is not free of problems. First of all, it is characterized by particular fume and 

irradiation, which are spread into the working environment. Despite the fact that risks 

for human operators can be reduced by adopting particular safety procedures, errors of 

any type and extent expose the users to hazards. Therefore, methods of process 

automation could reduce or even avoid any of these dangers. Additionally, typical 

uncontrolled laser welding processes are performed by setting a fixed laser power 

measured experimentally and adding a safety surpass of about 10% to compensate for 

process drifts and other external influences.  

As shown in Figure 1.1, the results of such processes can be characterized by 

significant imperfections, like smoke residue, spatters and craters, which do not only 

influence the aesthetics of the material stack, i.e. the workpiece, but most of all 

drastically reduce its strength and corrosion resistance. Furthermore, this strategy does 

not allow easily changing welding conditions during the process, such as feeding rate  
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or material thickness, which should be 

followed by proportionate changes of 

the laser power.  

Despite the existence of several reasons 

to integrate an automation system in 

laser beam welding equipment, almost 

nothing has been done to fulfil this 

request. The main causes lie in the 

physical complexity of the process, 

which makes difficult the development 

of exhaustive models for the characterization of its dynamics. Moreover, robust and 

adaptive closed-loop systems require appropriate and real-time measurement working 

with specific control algorithms. 

In the overview given by Schmidt et al. [2], titled “Process control in laser 

manufacturing – dream or reality?”, the state of the art of monitoring and controlling 

techniques in laser manufacturing processes is discussed. Concerning welding of 

metals, the authors conclude by stating that “although nowadays process monitoring 

systems are suitable for various laser applications, a process control system to prevent 

weld seam defects on-line is still to come and a desire of likely all users”. In fact, in 

the last years, several on-line monitoring systems have been proposed and some of 

them have already been developed, i.e. “Laser Welding Monitor” from Precitec, 

“Welding monitor PD 2000” from Prometec, “processobserver advanced” from 

Plasmo Industrietechnik GmbH, “Weldwatcher” from 4D, and “Plasmo” from ARC 

Seibersdorf research GmbH. Most of them are mainly based on the analysis of the 

optical emissions, due to the interaction between the laser beam and the metal, by 

either photodiodes or video cameras, or a combination of both. 

Photodiodes are relatively inexpensive and present a high temporal resolution. They 

allow sensing optical emissions which can be compared with previously recorded 

reference signals. The analysis of signal deviations from this reference leads to the 

detection of the occurrence of specific phenomena. Several sensors of this type have 

 
Figure 1.1: Uncontrolled full-penetration weld 
of two 0.7 mm thick zinc-coated steel sheets in 
an overlap joint with 0.1 mm gap. The process 
was performed at 9 m/min by using a constant 

laser power of 5.5 kW with 10% power as 
factor of safety [21]. 
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been developed to reveal weld imperfections [4-10]. The main bottleneck of 

photodiodes is due to their reduced spatial resolution, which usually complicates the 

simultaneous detection of several defects. Furthermore, photodiodes often require 

destructive tests of random samples in order to establish the quality of imperfection 

recognition – highly dependent on the completeness of the reference data – which is 

both time and cost consuming. 

The photodiode drawback regarding the reduced spatial information can be overcome 

by using spatially resolved detectors, such as CCD, CMOS, or thermal cameras. The 

detection of failures can be performed by extracting process image features [11, 16]. 

Some conventional CCD/CMOS cameras can reach high frame rates which are fully 

suitable for monitoring purposes. An example of a CCD camera system is the 

“FastCamera 34” from FastVision, based on a high-speed interline CCD which allows 

acquiring up to 210 fps at a resolution of 640x480 pixels. Another example is the 

CMOS “MotionBlitz® Cube3” from Mikrotron, which mounts a high sensitive 

512x512 image sensor able to reach frame rates up to 2500 fps at full resolution and up 

to 120000 fps at reduced resolutions. As shown in [17], camera based systems also 

allow the simultaneous observation of several areas of the weld seam. Nevertheless, 

the capabilities of such cameras are limited if the image features must also serve as 

feedback information for the real-time control of process parameters. In fact, in this 

case it is necessary to consider, in addition to the CCD/CMOS camera frame rates, the 

computational cost depending on the software for image feature evaluation. As we will 

see in the following paragraphs, controlling rates – including image sensing, image 

evaluation, and subsequent actuation tasks – must be within the multi kHz range to 

guarantee a sufficient robustness of the control against external influences. 

Thermal cameras have the advantage of being able to better visualize the melt pool and 

the keyhole opening at the same time at long wavelengths. However, the use of 

thermal cameras in industrial applications is limited because of their overall size and 

high investment costs. Another technique which makes use of both photodiodes and a 

CMOS camera is described in [18]. 
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The scope of this work is to demonstrate that a real-time control of LBW processes 

becomes “reality” by adopting cellular architectures based on Cellular Neural 

Network (CNN) theory [3]. The approach proposed here is focused on the use of a 

development platform produced by AnaFocus – the Eye-RIS vision system (VS) [19] – 

which includes a focal plane processor (FPP) called Q-Eye. The latter is a cellular chip 

where each cell consists of a programmable processor merged with an optical sensor 

and additional circuitry to be connected in several ways with cells in its 

neighbourhood. Therefore, each cell can both sense the corresponding spatial sample 

of the image and process this data in close interaction and cooperation with other cells. 

This concept allows benefiting from the advantages of both video camera systems and 

photodiodes, providing high spatial and temporal resolutions. In fact, the Eye-RIS VS 

enables capturing grey-scale images at a resolution of 176x144 pixels and reaching 

over 10000 fps for image acquisition and processing1. In this work, it was adopted for 

the implementation of algorithms for image feature extraction in coaxial images of 

LBW processes. Concerning the latter, a number of feedback parameters can be 

determined or chosen from the literature in order to monitor and influence controlled 

variables representing the state of the system within suitable time scales. Here, two 

image features are taken into account, i.e. the so called full penetration hole (FPH) and 

spatters, which are depicted in the examples of Figure 1.2.  

The FPH is an important characteristic 

which appears in the process images, 

depending on the penetration depth into 

the workpiece, and indirectly represents 

the strength of the weld seam. Thus, it is 

used for an instant control of the laser 

power in order to maintain the desired 

penetration depth into the material 

stack.  

                                              
1 The application of very simple procedures of image processing could lead up to around 50000 fps. 

 
Figure 1.2: Two typical LBW coaxial process 
images. (a) shows an example of FPH, while 

spatters are visible in (b). 
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Figure 1.3: From (a) to (d), sample 
images of a sequence acquired at 
a frame rate of 3 kHz are shown. 
Pictures (e) and (f) represent 
respectively the mean grey value 
calculated over 100 images and 
the corresponding standard 
deviation [20]. Picture (f) was 
rescaled from 0 to 255 digits and a 
different colormap was used to 
enhance the contrast of the FPH 
area. 

 

Spatters, instead, indicate that liquid steel and a large amount of rear melt pool are 

blowing away, leaving evident cavities and imperfections in the workpiece. They can 

occur because of several physical phenomena. The most common cause of spatters in 

industrial applications is the adoption of zinc-coated steel sheets in an overlap joint 

configuration, which are separated by a small gap. Therefore, the on-line detection of 

spatters is considered as a quality factor for the process and can be used, for instance, 

to detect a low gap size which is a difficult parameter to establish in production.  

As afore-mentioned, a robust visual feedback system for LBW requires controlling 

rates in the multi kHz range and, consequently, image acquisition and evaluation must 

be performed at very high speeds. Figure 1.3 illustrates this concept for a visual 

control system based on the FPH detection [20]. Here, a sequence of 100 images with 

FPH is considered. It was acquired by the Eye-RIS VS at an exposure time of 40 µs 

and a frame rate of approximately 3 kHz. Pictures from (a) to (d) show some samples 

of this sequence. Picture (f) shows the standard deviation of the pixel intensity 

calculated over all the images with respect to the mean grey value shown in picture (e). 

It is evident that the contrast in the FPH area is much lower in picture (e) than in the 

single images (a-d). On the other hand, the standard deviation in picture (f), which was 

rescaled within 0-255 to enhance the image contrast, shows very strong fluctuations in 

the FPH area, where the intensity of the pixel varies over the whole scale. Therefore, 
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due to the dynamics of the melt, the position and the shape of the FPH fluctuate 

rapidly within a narrow area. Thus, a fast contour detection in single images of a large 

series is more suitable than an evaluation of the absolute intensities. 

This thesis starts with a short introduction to LBW and CNN, followed by the 

description of the adopted visual closed-loop control system and the control strategy. 

The subsequent chapters regard the heart of this work, namely the description of the 

CNN algorithms for the detection of FPH and spatters, which were implemented on 

the Eye-RIS VS. The high-speed characteristic of these algorithms has suggested the 

development of another strategy based on the combined detection of FPH and spatters. 

By the adoption of these methods, controlling rates (including image sensing and 

evaluation, as well as control of the laser power) within 6 and 14 kHz can be reached. 

Their feasibility in real-life applications was demonstrated by several experimental 

results, some of which will be largely described in the last chapters of this thesis. 

The field of other possible FPH-based strategies was further explored by the execution 

of CNN learning procedures. CNN learning is formulated as an optimization problem, 

where the coefficients of the CNN template matrices must be optimized to obtain a 

desired output image, having specified the correspondent input image. Among several 

CNN structures, the continuous-time polynomial-type CNN model (PT-CNN) was 

chosen, since it is particularly suitable to represent complex problems and because it 

has a direct, very-large-scale integration (VLSI) realization, which will not be treated 

in this work [44, 45]. The research of a global solution was carried out by the 

simulated annealing which provided a good compromise between evaluation speed and 

extent of the search space. The strict relation of this solution to a specific VLSI 

realization, however, does not allow its implementation on the Q-Eye. Nevertheless, it 

presents noteworthy aspects, such as the full independence of a threshold value for 

image binarization. As we will see, the choice of this threshold value represents one of 

the most critical point of the strategies implemented on the Eye-RIS VS and requires a 

preliminary accurate analysis of process images. 


