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Abstract

Industrial facilities are supervised using dedicated Supervisory Control and
Data Acquisition (SCADA) applications. These applications, however, suffer
from being developed using platform specific terminologies which cause that
their operative characteristics are strongly merged with aspects of the technical
realization. Platforms executing these applications are characterized by short
innovation cycles, thus, decreasing the life time of SCADA applications. In-
dustrial facilities, however, are required to be in operation for decades which
possibly requires repeated redevelopment of these applications even if the oper-
ative characteristics remain the same. Model driven techniques are promising
design approaches to foster sustainability of SCADA applications: They separate
operative characteristics from their technical realization using Domain Specific
Languages.
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This thesis proposes the domain specific modeling workbench Movisa. Its
core consists of a domain specific modeling language enabling to capture op-
erative characteristics of SCADA applications. For this purpose, it contains
building blocks to create user interfaces, process data and communication rela-
tionships with automation specific data servers, and it allows to express custom
functionality through an Executable UML realization. Language Constraints
and model-integrity checks allow to identify errors in early design stages and
ensure the correctness of models. Transformation rules capture aspects of the
technical realization: They allow to process Movisa models either to modify
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these models or to automatically create runtime artifacts. In this context, differ-
ent kinds of transformations are provided in order to support modelers in their
assignments and, thus, to reduce the overall development effort. This complexity
is encapsulated behind a high-fidelity modeling interface to be exploited by
domain experts. It allows to solve problems with a common terminology that is
very close to the respective solution space. Furthermore, engineering tools are
able to populate Movisa models via the low-fidelity tool interface.

Case studies from different fields of the domain production automation prove
the language to be able to describe SCADA applications, thus, meeting related
requirements of industrial automation. Sustainability of these applications
can be ensured, among others, through automatic transformations, by reusing
models and transformations in future projects and through having only one tool
to master. The quintessence of this thesis is that even though model driven
approaches are challenging with respect to provide effective tool environments,
they are very promising means for creating sustainable software designs.
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Kurzfassung

Unter Supervisory Control and Data Acquisition (SCADA) wird das Überwachen
und Bedienen technischer Produktionsprozesse verstanden. Handelsübliche
SCADA-Systeme erzeugen Lösungen auf Basis plattformspezifischer Terminolo-
gien. Daraus folgt eine enge Verzahnung funktionaler Inhalte mit Aspekten ihrer
technischen Realisierung. Plattformen, auf denen SCADA-Lösungen genutzt wer-
den, entstammen zunehmend dem Endverbrauchermarkt und unterliegen damit
einer hohen Innovationsrate. Sich ändernde Plattformeigenschaften ziehen selbst
bei gleichbleibenden funktionalen Inhalten eine Neuentwicklung dieser Lösungen
nach sich. Die Einsatzzeit der SCADA-Lösungen ist somit verglichen mit der der
industriellen Anlagen gering. Die modellgetriebene Software-Entwicklung bietet
einen vielversprechenden Ansatz zur Erzeugung nachhaltiger SCADA-Lösungen,
indem sie funktionale Inhalte von Aspekten ihrer technischen Realisierung auf
Basis Domänenspezifischer Sprachen erlaubt.
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Diese Arbeit schlägt zur Lösung der genannten Problemstellung die domänen-
spezifische Werkzeugkette Movisa vor. Zentraler Bestandteil ist eine domänen-
spezifische Modellierungssprache, die funktionale Inhalte von SCADA-Lösungen
zu beschreiben vermag. Dazu stellt sie Sprachmittel für die Beschreibung der Be-
nutzungsschnittstelle sowie der Prozessdaten und Kommunikationsbeziehungen
zur Verfügung. Aufgrund der Vielfalt technischer Prozesse enthält sie außerdem
eine Executable UML-Realisierung, um die damit verbundenen Anforderungen zu
adressieren. Mittel der Modellverifikation und -integritätsprüfungen ermöglichen
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die Identifizierung von Fehlern bereits in frühen Entwurfsphasen und garantieren
die Korrektheit der Modelle. Transformationsregeln enthalten die Aspekte
der technischen Realisierung. Hinsichtlich einer automatischen Erzeugung der
Laufzeitartefakte werden diese den Movisa-Modellen zugeführt. Weitere Trans-
formationen verarbeiten Movisa-Modelle, um den Modellierer in seinen Auf-
gaben zu unterstützen und damit den Entwicklungsaufwand zu reduzieren. Die
mit diesen Komponenten verbundene Komplexität bleibt dem Modellierer durch
einen high-fidelity Arbeitsraum im vorgeschlagenen Werkzeug verborgen. Dies
ermöglicht das Arbeiten mit einer Terminologie, die sich nah am Lösungsraum
des jeweiligen Problems befindet. Über eine low-fidelity Schnittstelle erhalten
Engineering-Werkzeuge Zugriff auf das Movisa-Modell.
Fallstudien aus verschiedenen Anwendungsfeldern der Domäne Produktion-

sautomatisierung belegen, dass die vorgeschlagene domänenspezifische Sprache
imstande ist, SCADA-Lösungen zu beschreiben. Die Nachhaltigkeit dieser Lösun-
gen ist unter anderem durch automatische Transformationen, durch Wiederver-
wendung der Modelle und Transformationen in späteren Projekten sowie durch
die Pflege nur eines Werkzeugs sichergestellt. Als Quintessenz dieser Arbeit wird
festgestellt, dass modellgetriebene Ansätze zur Softwareentwicklung zwar vor
dem Hintergrund der Bereitstellung effizienter Werkzeuge herausfordernd sind.
Doch zeigen sie sich vielversprechend für den Entwurf nachhaltiger Softwarelö-
sungen.
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Chapter 1

Introduction
Automation systems consist of technical processes and the required automation
equipment [Lunze, 2008]. A technical process is, according to Johannsen (1993),
a physical-technical or a chemical-technical procedure with material, energy,
and/or information flows at input and output. Johannsen (1993) instanced
a procedure on a milling machine with a raw workpiece and electrical energy
as input, the processed workpiece, chips, and thermal energy as output. The
automation equipment is composed of devices required to transform material
and energy. These devices impact on the technical process, e.g. a servo motor
moving the milling head.
Human operators are responsible for a safe operation of an automation sys-

tem [Johannsen, 1993]. Hence, it is monitored and operated by human operators
through appropriate Human Machine Interfaces (HMI), constituting the con-
nection between the human operator and the automation system: It allows
for monitoring the operative states of the automation system by presenting
relevant information that have appropriately been prepared. Furthermore, it
consists of input devices for entering information. In this way, human operators
are enabled to have an impact on the technical process according to its actual
state and given goals. Sheridan (1992) makes a distinction between Human
Computer Interaction (HCI) and Supervisory Control : While in HCI one uses
computers to operate other computers or databases as end objects, in Super-
visory Control computers are only mediators between a technical process and
human supervision. Sheridan (1992) defines Supervisory Control as follows: “[...]
one or more human operators are intermittently programming and continually
receiving information from a computer that itself closes an autonomous control
loop through artificial effectors and sensors to the controlled process or task
environment”1. Figure 1.1 shows the basic paradigm behind this definition.
Appendix A exemplarily presents concrete supervisory control solutions.

1Cassandras and Lafortune (1999) introduce Supervisory Control in automata theory for a
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Figure 1.1: Basic Supervisory and Control Paradigm (based on [Sheridan, 1992]).

A remote computer closes a control loop by observing values actually mea-
sured by sensors and by setting particular actuators according to these values
and given (control) programs. Human operators supervise this process through
graphical displays representing the technical instrumentation and employ ap-
propriate controllers to modify parameters in the remote programs. Both, the
operator and the remote device, might be separated by “a barrier of distance,
time, or inconvenience” [Sheridan, 1992]. To implement this general concept,
Programmable Logic Controllers (PLC) that act independently and close to
the process are usually used as remote computers. Supervisory Control and
Data Acquisition (SCADA) applications constitute the local part depicted in
Figure 1.1. Bailey and Wright (2003) refer SCADA “to the combination of
telemetry and data acquisition”: It encompasses the collection of relevant infor-
mation, carrying out any necessary analysis and preparing that information to be
presented on a number of operator screens or displays. Required control actions
are then conveyed back to the process. A SCADA application is, according to
Daneels and Salter (1999), a purely software package that is positioned on top
of hardware. Thus, SCADA applications form the Human Machine Interface
for process visualization.

Definition 1.1: A Visualization System is a software tool to develop SCADA
applications. A Visualization Solution is a particular SCADA application tailored

given Discrete Event System (DES) “whose behavior must be modified by feedback control
in order to achieve a given set of specification.” This DES is modeled by a graph G with an
event set E. If the behavior of G is not satisfactory, it must be controlled by a supervisor
S. S observes all events that G executes and then, “S tells G which events in the current
active event of G are allowed next.”
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to supervise a concrete technical process, thus being the User Interface to this
process.

In the following, Section 1.1 explains the necessity for a new approach to the
development of visualization solutions and introduces the solution proposed in
this thesis. Section 1.2 provides an overview of structure of this thesis.

1.1 Problem Statement and Aims

Vital requirements for graphical human machine interfaces for process control are
among others efficiency, ergonomics, and that they “shall be so designed as to
allow the operator to perform [her] activities in accordance with [her] capabilities,
skills and needs, as required to achieve [her] objectives” [VDI/VDE, 2005]. For
this purpose, the guideline VDI/VDE (2005) recommends to involve operators
into the design phase. Therewith it proposes a User Centered Design (UCD)
approach, thus entailing a significant amount of the overall system design and
development effort. On the other hand, platforms executing SCADA applications
in industrial automation are characterized by diversity as illustrated in Figure 1.2.

Platform (1)

(a)

Platform (2)

(b)

Platform (3)

(c)

Periphery

Hardware

Operating System

Runtime Environment

SCADA Solution

Figure 1.2: Illustration of three SCADA applications operated on different plat-
form configurations: (a) shows an embedded device with a native SCADA
realization to be exploited close to the process, (b) presents a mobile version
for remote access, and (c) illustrates a classical installation of a SCADA ap-
plication to be operated on a workstation in control rooms. These platform
configurations can also be combined.

Currently, visualization solutions are developed using platform specific tools
and terminologies, such as a specific programming language. As a consequence,
operative characteristics are strongly merged with aspects of their technical
realization. Thus, a human machine interface has to be redeveloped for and
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tested on each platform using different and probably incompatible tools, even
if the operative characteristics remain the same. Moreover, as Menzel et al.
(2003) state, the situation is exacerbated by the fact that standard end-user
platforms are used almost exclusively. These platforms are characterized by
short innovation cycles decreasing the life time of SCADA components to less
than five years due to regular releases of new software versions [Menzel et al.,
2003]. Given the fact that industrial facilities are required to be in operation
for decades and given the complexity of SCADA applications in order to ensure
correctness, reliability, and usability, new design approaches are demanded to
suit the rapid development of the platforms.
Model driven techniques are promising design approaches, as they express op-

erative characteristics through a platform independent terminology that is based
on models. Technical aspects are separated into transformations as carriers of
platform specific terminologies. For the given situation, model driven approaches
enable to capture the operative characteristics of a SCADA solution by creating
a platform independent model. Deploying this solution to a particular platform
requires an appropriate transformation that translates the platform independent
terminology, provided by the model, into a platform specific terminology. If a
compatible platform evolves over time, e.g. through an update of the operating
system, causing incompatibility or to equip another or a new platform with this
existing SCADA solution, only suitable transformation is required while the
respective model remains unchanged. Consequently, operational characteristics
need to be expressed and tested for correctness, reliability, and usability only
once. Tested and correct transformations are expected to produce always correct
platform specific runtime solutions. Additionally, model driven approaches offer
the following more general benefits:
(1) Functional aspects can be reused in future projects, even if they aim at

another platform.
(2) Technical realizations can be reused in future projects, even if the func-

tionality is a different one.
(3) High-quality and reproducible solutions can be generated through tested

transformations.
(4) Various technical solutions can automatically be created from a single

functional description, simply by invoking another transformation.
(5) The repertoire of required tools can be slimmed down.
Nichols, Chau, and Myers (2007) have already proven the viability of model

driven approaches for the development of user interfaces for office applica-
tions. Aquino et al. (2010) additionally proved that model driven development
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procedures are promising even for automatically deploying user interfaces to
different devices. Visualization solutions in industrial environments, however, are
characterized by specific requirements and constraints that the aforementioned
approaches to model office solutions do not meet, mainly due to the fact that
office applications are connected to databases, whereas industrial solutions are
connected to technical processes.

This thesis transfers the aforementioned advantages of model-driven
approaches into the domain of industrial production automation2.
It proposes a Domain Specific Language which enables the develop-
ment of sustainable visualization solutions. Other than model-driven
approaches for office applications, this modeling languages is tailored
to meet the requirements of industrial automation: (1) It defines
a sufficient set user interface components with appropriate repre-
sentation, animation, and interaction properties. (2) It provides
a solid abstraction to the variety of industrial automation specific
process communication means. (3) It contains an Executable UML
realization to take into account the diversity of industrial processes
and their individual requirements.

This thesis contributes the domain specific modeling workbench Movisa, as
depicted in Figure 1.3: Movisa models capture operative characteristics of
visualization solutions. Transformation rules capture aspects of the technical
realization. The verification tool ensures the correctness of models and the
transformation tool processes Movisa models either to modify these models
or to automatically create runtime artifacts. This complexity is encapsulated
behind a high-fidelity modeling interface to be exploited by domain experts.
Engineering tools are able to populate Movisa models through low-fidelity tool
interface.

2Johannsen (1993) brings the fields of process industries, factory automation, and energy
supply systems under the umbrella of production automation together.
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Figure 1.3: Basic concept, architecture, and functionality of the proposed Movisa
modeling workbench.

1.2 Thesis Structure

This thesis is structured as follows:
Chapter 2 gives an overview of the state of the art and its particular back-

ground. This chapter concludes with a detailed requirements definition
used for pointing out deficiencies of the state of the art approaches and
how this thesis contributes to them.

Chapter 3 formalizes the Language Model of the Domain Specific Language
Movisa by abstracting its Target Domain into the Core Language Model.
Section 3.3 explains Language Constraints and Section 3.4 presents the
Language Behavior definition.

Chapter 4 works out and discusses a concrete syntax notation that enables
modelers to work and to think their domain.

Chapter 5 discusses required aspects of a modeling workbench for creating, us-
ing, and maintaining models of the language that was created in Chapter 3
which encapsulates the complexity of the model driven approach.

Chapter 6 evaluates the feasibility of the Movisa modeling workbench by
exploiting it on representative case studies.

Chapter 7 elaborates a transformation based framework enabling to incorpo-
rate the Movisa modeling workbench in higher-level engineering proce-
dures.
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1.2 Thesis Structure

Chapter 8 draws the conclusions of the findings of the previous chapters.
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