
Stefan Hennig
Design of Sustainable Solutions for Process Visualization in

Industrial Automation with Model­Driven Software Development

Design of Sustainable Solutions for Process
Visualization in Industrial Automation with Model­

Driven Software Development

Stefan Hennig

Beiträge aus der Automatisierungstechnik

Dresden 2012

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.
Bibliographic Information published by the Deutsche Bibliothek
The Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibiograpic data is available in the internet at
http://dnb.ddb.de.
Zugl.: Dresden, Techn. Univ., Diss., 2012
Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„Design of Sustainable Solutions for Process Visualization in Industrial
Automation with Model­Driven Software Development“ von Stefan Hennig
überein.

© Jörg Vogt Verlag 2012
Alle Rechte vorbehalten. All rights reserved.
Gesetzt vom Autor
ISBN 978­3­938860­49­6
Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany
Phone: +49­(0)351­31403921
Telefax: +49­(0)351­31403918
e­mail: info@vogtverlag.de
Internet : www.vogtverlag.de

Fakultät Elektrotechnik und Informationstechnik

Institut für Automatisierungstechnik

Entwurf nachhaltiger Lösungen zur
Prozessvisualisierung in der industriellen

Automatisierungstechnik mittels
modellgetriebener Softwareentwicklung

Design of Sustainable Solutions for Process Visualization
in Industrial Automation with

Model-Driven Software Development

Stefan Hennig

Der Fakultät Elektrotechnik und Informationstechnik
der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs
(Dr.-Ing.)

genehmigte Dissertation

Y

Vorsitzender: Prof. Dr.-Ing. Ralf Lehnert

Gutachter: Prof. Dr. techn. Klaus Janschek
Prof. Dr. Kris Luyten

Tag der Einreichung: 02.03.2012

Tag der Verteidigung: 07.06.2012

Acknowledgments
Successful research has at least three preconditions: (1) a reliable and carefree
financial situation, (2) passionate scientific advice, and (3) many enthusiastic
supporters. To meet the first requirement, this work was funded as “Landesinno-
vationspromotion” by the European Social Fund and the Free State of Saxony.
This funding gave me the independence to research freely from conflicts of
interests.
Prof. Dr. techn. Klaus Janschek, Managing Director of the Institute of

Automation, Technische Universität Dresden, ensured the second requirement
for successful research. I would like to thank him for his guidance and for
the resources which made this work possible. With a balanced relationship
between encouragement and challenge, he left me all the creative freedom while
he ensured a successful conclusion.
Prof. Dr. Kris Luyten, Professor at the Expertise Centre for Digital Media,

Universiteit Hasselt, Belgium, invited me to a research stay in his team. During
this short time, we implemented several exciting ideas and I was able to learn a
lot about the real business of research. Particularly, Kris’ passion for science
and for motivating support inspired me.

This work was realized as part of the research of the Teleautomation working
group. It is based on collaborative work and a great number of shared ideas.
Many thanks go to the fabulous team forming that group, particularly to the
team leader PD Dr.-Ing. Annerose Braune. She asked countless critical questions
and always had an open mind about unconventional approaches. I would like to
thank Evelina Koycheva, Matthias Freund, and Henning Hager for the strong
company and all the fruitful discussions. Henning had accompanied my project
over several years at the narrowest. No one else has had such deep insight into
my work.
The third requirement was met, on one side, by many students. Some parts

of this work were greatly influenced by them, other parts were collaboratively
developed. In particular, many thanks are devoted to Nicolas Dingeldey, Alexan-
der Witkowski, Ying Su, and Martin Halfter. On the other hand, I am very
grateful to the secretary of the institute, Petra Möge, and to the institute’s
backbone, Matthias Werner, for all the things they arranged for me during the

vii

past six years. Furthermore, I want to thank all the other doctorate students
of the institute for having such a great time. Particular thanks go to Thomas
Kaden who helped me a lot with preparing the doctoral viva.

More important than getting technical support, however, is a strong support
in “real life”. Hence, I would like to thank my friends for always supporting
me during all the years of hard work. Special thanks go to Maik Biebl for
being so patient with me and for his insatiable interest in my work despite
not understanding a single word. Special thanks also go to Bärbel Wöhlke for
polishing my English.

“What you have started, must also be brought to an end!” As I grew up under
this premise, my parents, Lorita and Günter, and my brother Sebastian have
always given me the courage to finish what I had started and the freedom to
make my own decisions. I am in great debt to them.

And finally, I thank Katrin Holinski for reminding me so often that there is a
life beyond technology.

viii

Abstract

Industrial facilities are supervised using dedicated Supervisory Control and
Data Acquisition (SCADA) applications. These applications, however, suffer
from being developed using platform specific terminologies which cause that
their operative characteristics are strongly merged with aspects of the technical
realization. Platforms executing these applications are characterized by short
innovation cycles, thus, decreasing the life time of SCADA applications. In-
dustrial facilities, however, are required to be in operation for decades which
possibly requires repeated redevelopment of these applications even if the oper-
ative characteristics remain the same. Model driven techniques are promising
design approaches to foster sustainability of SCADA applications: They separate
operative characteristics from their technical realization using Domain Specific
Languages.

Movisa Language Workbench

Verification

Transformation

Transformation
Rules

Verification
Rules

Visual
Feedback

Low-fidelity
Tool

Interface

High-fidelity
Modeling
Interface

Runtime
Artifacts

Movisa
Model

Domain
Knowledge

☑
Requirements

Plant
Specification

Domain Expert

Plant
Specification

Engineering
Tool

Deployed
Visualization

Solution

Runtime
Environment

This thesis proposes the domain specific modeling workbench Movisa. Its
core consists of a domain specific modeling language enabling to capture op-
erative characteristics of SCADA applications. For this purpose, it contains
building blocks to create user interfaces, process data and communication rela-
tionships with automation specific data servers, and it allows to express custom
functionality through an Executable UML realization. Language Constraints
and model-integrity checks allow to identify errors in early design stages and
ensure the correctness of models. Transformation rules capture aspects of the
technical realization: They allow to process Movisa models either to modify

ix

these models or to automatically create runtime artifacts. In this context, differ-
ent kinds of transformations are provided in order to support modelers in their
assignments and, thus, to reduce the overall development effort. This complexity
is encapsulated behind a high-fidelity modeling interface to be exploited by
domain experts. It allows to solve problems with a common terminology that is
very close to the respective solution space. Furthermore, engineering tools are
able to populate Movisa models via the low-fidelity tool interface.

Case studies from different fields of the domain production automation prove
the language to be able to describe SCADA applications, thus, meeting related
requirements of industrial automation. Sustainability of these applications
can be ensured, among others, through automatic transformations, by reusing
models and transformations in future projects and through having only one tool
to master. The quintessence of this thesis is that even though model driven
approaches are challenging with respect to provide effective tool environments,
they are very promising means for creating sustainable software designs.

x

Kurzfassung

Unter Supervisory Control and Data Acquisition (SCADA) wird das Überwachen
und Bedienen technischer Produktionsprozesse verstanden. Handelsübliche
SCADA-Systeme erzeugen Lösungen auf Basis plattformspezifischer Terminolo-
gien. Daraus folgt eine enge Verzahnung funktionaler Inhalte mit Aspekten ihrer
technischen Realisierung. Plattformen, auf denen SCADA-Lösungen genutzt wer-
den, entstammen zunehmend dem Endverbrauchermarkt und unterliegen damit
einer hohen Innovationsrate. Sich ändernde Plattformeigenschaften ziehen selbst
bei gleichbleibenden funktionalen Inhalten eine Neuentwicklung dieser Lösungen
nach sich. Die Einsatzzeit der SCADA-Lösungen ist somit verglichen mit der der
industriellen Anlagen gering. Die modellgetriebene Software-Entwicklung bietet
einen vielversprechenden Ansatz zur Erzeugung nachhaltiger SCADA-Lösungen,
indem sie funktionale Inhalte von Aspekten ihrer technischen Realisierung auf
Basis Domänenspezifischer Sprachen erlaubt.

Movisa Language Workbench

Verification

Transformation

Transformation
Rules

Verification
Rules

Visual
Feedback

Low-fidelity
Tool

Interface

High-fidelity
Modeling
Interface

Runtime
Artifacts

Movisa
Model

Domain
Knowledge

☑
Requirements

Plant
Specification

Domain Expert

Plant
Specification

Engineering
Tool

Deployed
Visualization

Solution

Runtime
Environment

Diese Arbeit schlägt zur Lösung der genannten Problemstellung die domänen-
spezifische Werkzeugkette Movisa vor. Zentraler Bestandteil ist eine domänen-
spezifische Modellierungssprache, die funktionale Inhalte von SCADA-Lösungen
zu beschreiben vermag. Dazu stellt sie Sprachmittel für die Beschreibung der Be-
nutzungsschnittstelle sowie der Prozessdaten und Kommunikationsbeziehungen
zur Verfügung. Aufgrund der Vielfalt technischer Prozesse enthält sie außerdem
eine Executable UML-Realisierung, um die damit verbundenen Anforderungen zu
adressieren. Mittel der Modellverifikation und -integritätsprüfungen ermöglichen

xi

die Identifizierung von Fehlern bereits in frühen Entwurfsphasen und garantieren
die Korrektheit der Modelle. Transformationsregeln enthalten die Aspekte
der technischen Realisierung. Hinsichtlich einer automatischen Erzeugung der
Laufzeitartefakte werden diese den Movisa-Modellen zugeführt. Weitere Trans-
formationen verarbeiten Movisa-Modelle, um den Modellierer in seinen Auf-
gaben zu unterstützen und damit den Entwicklungsaufwand zu reduzieren. Die
mit diesen Komponenten verbundene Komplexität bleibt dem Modellierer durch
einen high-fidelity Arbeitsraum im vorgeschlagenen Werkzeug verborgen. Dies
ermöglicht das Arbeiten mit einer Terminologie, die sich nah am Lösungsraum
des jeweiligen Problems befindet. Über eine low-fidelity Schnittstelle erhalten
Engineering-Werkzeuge Zugriff auf das Movisa-Modell.
Fallstudien aus verschiedenen Anwendungsfeldern der Domäne Produktion-

sautomatisierung belegen, dass die vorgeschlagene domänenspezifische Sprache
imstande ist, SCADA-Lösungen zu beschreiben. Die Nachhaltigkeit dieser Lösun-
gen ist unter anderem durch automatische Transformationen, durch Wiederver-
wendung der Modelle und Transformationen in späteren Projekten sowie durch
die Pflege nur eines Werkzeugs sichergestellt. Als Quintessenz dieser Arbeit wird
festgestellt, dass modellgetriebene Ansätze zur Softwareentwicklung zwar vor
dem Hintergrund der Bereitstellung effizienter Werkzeuge herausfordernd sind.
Doch zeigen sie sich vielversprechend für den Entwurf nachhaltiger Softwarelö-
sungen.

xii

Contents

Acknowledgments vii

Abstract ix

Kurzfassung xi

Contents xv

List of Figures xxvii

List of Tables xxix

List of Listings xxxi

Nomenclature xxxiv

1 Introduction 1
1.1 Problem Statement and Aims 3
1.2 Thesis Structure . 6

2 State of the Art 9
2.1 Human Machine Interface Engineering in Automation 9
2.2 Model Based User Interface Development 12
2.3 Model Driven Software Development 15
2.4 Domain Specific Languages . 18
2.5 Requirements and Contributions 23

3 Language Model 31
3.1 Analyzing the Target Domain 31

3.1.1 Scripting Language . 32
3.1.2 Process Data . 33
3.1.3 User Interface Components 35

xiii

3.2 Core Language Model . 40
3.2.1 Algorithm Model . 41
3.2.2 Client Data Model . 45
3.2.3 Presentation Model . 52

3.3 Language Model Constraints . 64
3.3.1 Intra-Submodel Constraints 65
3.3.2 Inter-Submodel Constraints 69
3.3.3 Model-Integrity Checks 70

3.4 Language Behavior Definition 72
3.4.1 Process Communication 73
3.4.2 Alarm Management . 75
3.4.3 Specific Requirements 77
3.4.4 Reflecting Process States and Intervention 77

3.5 Conclusions . 80

4 Concrete Syntax Notation 83
4.1 Preliminary Consideration . 83
4.2 Algorithm Model: Pure Graphical Syntax Notation 84
4.3 Client Data Model: Pure Textual Syntax Notation 88
4.4 Presentation Model: Combined Syntax Notation 90
4.5 Conclusions . 91

5 Movisa: Domain Specific Modeling Workbench 95
5.1 Requirements . 96
5.2 Model Verification . 97
5.3 Model Transformation . 98

5.3.1 Dimensions of Code Generation 98
5.3.2 Specific Characteristics of Code Generation 99
5.3.3 On the Deployment of Runtime Artifacts 104
5.3.4 Evaluation of Existing Code Transformation Engines . . 106

5.4 On the Verification of the Language Behavior 107
5.5 Concrete Syntax Implementation 108
5.6 Movisa Modeling Workbench . 108
5.7 Conclusions . 110

6 Evaluation 111
6.1 Functional Requirements Evaluation 111

6.1.1 Case Study: Process Industries 112
6.1.2 Case Study: Autonomous Robots in Factory Automation 121

xiv

6.1.3 Case Study: Energy Supply Systems 125
6.1.4 Case Study: Health Care 128

6.2 Effectiveness Factors Evaluation 131
6.2.1 Reduce Solution Viscosity 131
6.2.2 Addressing a New Problem 133
6.2.3 Power in Combination 133

6.3 Conclusions . 134

7 Exploiting Movisa in Supplementary Model-Based Environments 137
7.1 autoHMI: HMI Generation in Process Industries 137
7.2 Useware Engineering Process . 139
7.3 Flepr: Flexible Transformation Based Workflows 141
7.4 Conclusions . 145

8 Conclusions 147
8.1 Achievements and Contributions 147
8.2 Future Work . 153

References 157

Appendix A Sample Visualization Applications I
A.1 Power Supply Network Monitoring in the Technische Universität

Dresden . I
A.2 Process Industries . IV
A.3 Factory Automation . V

Appendix B Core Language Model VII

Appendix C Case Study Results LXXIX
C.1 Process Industries Visualization Solution LXXIX
C.2 Factory Automation Visualization Solution LXXXII
C.3 Energy Supply System Visualization Solution LXXXIV
C.4 Health Care Visualization Solution LXXXVII

xv

List of Figures

1.1 Basic Supervisory and Control Paradigm (based on [Sheridan,
1992]). 2

1.2 Illustration of three SCADA applications operated on different
platform configurations: (a) shows an embedded device with a
native SCADA realization to be exploited close to the process,
(b) presents a mobile version for remote access, and (c) illustrates
a classical installation of a SCADA application to be operated on
a workstation in control rooms. These platform configurations
can also be combined. 3

1.3 Basic concept, architecture, and functionality of the proposed
Movisa modeling workbench. 6

2.1 Schematic diagram of the engineering timeline of an Automation
System (loosely based on [Urbas and Doherr, 2011]): SCADA
engineering takes place at the very end. 10

2.2 A simplified version of the Cameleon Reference Frame-
work [Calvary et al., 2003], as proposed by Limbourg et al.
(2005). 13

2.3 Illustration of the core concepts of MDSD: (a) shows the com-
monly used relation between models; (b) connects these models
through transformations. 16

2.4 Comparison of two MDSD compliant modeling techniques: (a)
employs the XML technology stack as formal modeling technique;
(b) employs the techniques defined in the MDA specification by
the OMG. 17

2.5 Artifacts of Domain Specific Languages as formalized by Strem-
beck and Zdun (2009). 19

3.1 Principle of providing communication drivers for different proto-
cols: A data model organizes different types of process variables;
either the data model or the process variable is responsible for
converting the data to be used, e.g. by user interface widgets. . 34

xvii

3.2 Exemplary deployment of a visualization solution: Client-/Server
architecture using OPC XML-DA middleware for providing pro-
cess data also to web clients. 34

3.3 Basic geometric user interface widgets. 35
3.4 Text widgets. 36
3.5 Common interaction widgets (also known from typical office ap-

plications). 36
3.6 Interaction widgets that are mandatory for monitoring and oper-

ating technical processes. 37
3.7 The root elements of the Core Language Model and their main

relationships. 41
3.8 Basic principle of the Boundary concept. 44
3.9 A common information model provides a unified interface to

different data provider specific information models. 46
3.10 The Logical Data Perspective represents the common information

model, the Technical Data Perspective captures the data provider
specific information models. Both perspectives are connected
through an information mapping. 46

3.11 Relationship between a UI Component and its configurable pa-
rameters, classified by the categories Representation, Animation,
and Interaction. 55

3.12 Complex UI Component and its properties being defined outside
of the component itself. 63

3.13 Navigation path through the displays of a visualization solution.
The dashed arrow indicates that “Display 2.1” will be blended in
on top of “Display 2”. 64

3.14 Valid example configuration of a Read Link Action. 66
3.15 Valid example configuration of the Client Data Model: constraints

ensure a correct information mapping between the logical and
technical data perspective. 67

3.16 Valid example configuration of the Client Data Model; language
constraints ensure the correct usage of the Generic Server elements. 68

3.17 Correct (a) and incorrect (b) configuration of a Cloned Component
relationship between two UI Components. 68

3.18 Illustrating the need for additional language model constraints:
Both relationships “R3” and “R4” must refer to the same object
in order to ensure wellformedness of the relationship “R1”. . . . 69

xviii

3.19 Illustrating the need for language model constraints: Concrete
Comparator types depend on the type of the connected Data
Item. 70

3.20 Demonstration of the general language behavior by means of a
simple visualization solution at runtime. It can be seen which run-
time aspects emerge from the elements of the respective submodel,
deduced in Section 3.2. 73

3.21 Client Data Model configuration that ensures the runtime solution
always feeding a local data pool with current process values. A
special characteristic is that a Subscription can be defined with
data items of different data server specifications. 74

3.22 Runtime equivalent of the configuration depicted in Figure 3.21:
Although a single subscription was modeled, it results in an
appropriate communication stub per data server during runtime. 75

3.23 The Data Item “DI1”, configured in Figure 3.21, defines four
specific limit values; an Alarm gives them a certain meaning by
stating whether it is an upper or a lower bound alarm. 76

3.24 Runtime behavior of an Alarm element: Alarm Behaviors are
represented as mutual exclusive Alarm States; an alarm state in
turn can be seen as a state machine. 76

3.25 Example configuration of an Alarm Control widget. Its charac-
teristic Alarm Control Animation property allows for referring
to selected alarms that were grouped by particular Notification
Classes. In this example, it only presents the Alarm “A1”, as it
is connected to this widget through the element “N” (comp. also
Figure 3.23). 77

3.26 Example configuration of a Boundary element intended to in-
tegrate application specific code, realizing in this case different
methods to convert process data. It expects the data to be con-
verted on the Required Interface and returns the results through
the interface Provided Interface. 78

3.27 Example configuration of a Text Label widget. 78

xix

3.28 Based on the model depicted in Figure 3.27, a transformation is
responsible for making use of the most suitable characteristics: A
Write Data Item Effect tries to realize an atomic write opera-
tion if it is provided by the particular data server specification.
Otherwise, it uses a fall-back strategy: While the OPC XML-DA
specification proposes to write all data items with a single request
(comp. Figure 3.29a), a Modbus TCP data provider writes the
data items iteratively (comp. Figure 3.29b). 79

3.29 Strategies for writing data items; each strategy is in turn the
consequence of the limitations of an individual data server speci-
fication. 80

4.1 Improved UML actions, mainly adopted from the symbols of the
Scrall language specification [Starr, 2003]. 86

4.2 Actions with their symbols that were taken over from the Scrall
language specification [Starr, 2003] without modifications. . . . 86

4.3 UML actions with their respective newly created symbols. . . . 87
4.4 Symbols for the actions introduced as extension to the UML

specification, as discussed in Section 3.2.1. 88
4.5 Contrasting both the graphical and the textual modeling assets

of the Presentation Model. 91
4.6 Graphical concrete syntax notation of the Presentation Model:

The Navigation Subsystem (left hand side) looks very much like
a state machine. Each state conceals a Panel Subsystem (right
hand side), which provides high-fidelity user interface modeling. 91

5.1 Technology stack to provide model-integrity checks, as proposed
by [Raneburger et al., 2011b, Figure 1]. 97

5.2 Demonstrating the fundamentals of the used graph algorithms:
(a) shows an acyclic directed graph; (b) presents a cyclic directed
graph (solid arrows) as well as the required substitution to become
an acyclic directed graph (dashed action and arrows). 101

5.3 Mockup of a dialog dedicated to populate a CUI-to-CUI trans-
formation with platform characteristics. 103

5.4 Sample non-sandboxed deployment with Python as target tech-
nology. 105

xx

5.5 Web-based sample deployment with HTML and JavaScript as
target technology. Because web applications are executed in a
sandbox—the web browser—, certain components need to be
transferred to dedicated processing nodes. 106

5.6 The concrete setup to verify the language behavior depends on
how the dynamic semantics were defined. 107

5.7 Components of the Movisa modeling workbench. 109

5.8 Movisa Workflow: Modeling, verifying models, and transforming
models are separate tasks in the development process. 110

6.1 Excerpt of the Presentation Model: The Navigation Subsystem
specifies the available Panels and the Navigation Flows between
them; the Panel Subsystem hosts the UI Components of an in-
dividual Panel (comp. Figure 4.6). Using the Navigation Flow
with the dashed arrow targeting in the “Process Overview Panel”,
this target Panel can be seen as an abstract one which can only
be cloned by other Panels. 115

6.2 Faceplate with a two-stage operation: Using the Buttons “Start”
and “Stop” is only possible after actuating the “Release” Button. 117

6.3 Excerpt of the Algorithm Model ensuring to operate the tech-
nical process mutual exclusively using Executable UML. 119

6.4 Excerpt of the Presentation Model emphasizing on the model
annotations as instructions for the CUI-to-CUI transformation:
The Simple Container (Ê) component will preserve its contents
on big and medium sized screens and will be converted to a Text
Label on small screens. The Image (Ë) will only be kept on big
screens. 121

6.5 Generated artifacts in relation to the resulting deployment con-
figuration of the process industries case study: A centralized
web server operates the Alarm Management and Historical Data
components, different visualization clients are equipped with
completely generated visualization solutions of different target
technologies. 122

6.6 Setup of the factory automation case study. 123

xxi

6.7 Resulting deployment configuration of the factory automation
case study: The control station “Ifa Nxt Control Ws” controls the
production process and provides a web service based interface
for visualization clients. Two different runtime solutions were
generated from a single Movisa model. 125

6.8 Demonstration of the basic principle behind the network simulator
NetSimP : Each state represents the data model of the entire
network in a distinct point in time. 127

6.9 Resulting deployment configuration of the power supply system
case study: Runtime solutions of two different target technologies
were generated. Both are connected to the network simulator
NetSimP. 129

6.10 Resulting deployment configuration of the health care case study:
Only a non-sandboxed runtime solution is able to meet the re-
quirements. 131

7.1 Classification of the autoHMI concept (white box in the center)
by means of the Cameleon Reference Framework (left
hand side). The gray boxes present the individual information
gathered from the engineering data and stored in the particular
models. 138

7.2 Phases of the Useware Engineering process classified by means of
the Cameleon Reference Framework. Each development
phase comes with a particular modeling language at a different
level of abstraction. 140

7.3 Petmap: Reducing developer interaction when applying inter-
active transformations in iterative development processes (from
[Hager et al., 2011]). 141

7.4 Basic principle of the User Centered Design process. 142

7.5 FLEPR: The overall concept showing details for each develop
step, namely À Model Refinement, Á Model Refactoring, and
Â Model Synchronization. This figure also shows which kind of
users are involved in the particular development phase. 144

xxii

A.1 Mimic of a transformer station in which the power is transformed
from medium voltage (from the electricity supplier) to supply
voltage (to the consumer). Characteristic in this mimic are the
three stage switches: Only after releasing this switch locally, a
second release must happen through the visualization solutions
before it can be operated. II

A.2 Mimic of the subsequent hierarchy level: Operative states of the
network inside the building can be monitored. III

A.3 Mimic showing a part of a pharmaceutical process: It is charac-
terized by a static background image augmented with dynamic
elements. These dynamic elements reflect the current state of the
process by showing actual process values numerically or by means
of elements that vary their height (size animations). IV

A.4 Mimic for monitoring a wafer production line: A robot arm is
shown in the center. Hence, user interfaces for monitoring and
operating of factory automation processes are characterized by
moving elements (position animations). V

B.1 Core Language Model: Movisa Root. VII
B.2 Core Language Model: Algorithm Root. VIII
B.3 Core Language Model: Class Subsystem. IX
B.4 Core Language Model: Boundary Subsystem. X
B.5 Core Language Model: Data Type Subsystem. XI
B.6 Core Language Model: State Machine Subsystem. XII
B.7 Core Language Model: Action Root Subsystem. XIII
B.8 Core Language Model: Action Pin Flow Subsystem. XIV
B.9 Core Language Model: Action Collection. XV
B.10 Core Language Model: Variable Action Subsystem. XVI
B.11 Core Language Model: Accept Event Action Subsystem. XVII
B.12 Core Language Model: Send Signal Action Subsystem. XVIII
B.13 Core Language Model: Object Action Subsystem. XIX
B.14 Core Language Model: Read Boundary Action Subsystem. . . . XX
B.15 Core Language Model: Read Presentation Model Action Subsys-

tem. XXI
B.16 Core Language Model: Value Specification Action Subsystem. . XXII
B.17 Core Language Model: Structural Feature Action Subsystem. . . XXIII
B.18 Core Language Model: Data Item Action Subsystem. XXIV
B.19 Core Language Model: Link Action Subsystem. XXV

xxiii

B.20 Core Language Model: Expansion Region Action Subsystem. . . XXVI
B.21 Core Language Model: Presentation Model Root. XXVII
B.22 Core Language Model: Navigation Subsystem. XXVIII
B.23 Core Language Model: Multi Lingual Text Definition Subsystem.XXIX
B.24 Core Language Model: Image Bundle Subsystem. XXX
B.25 Core Language Model: Color Definition Subsystem. XXXI
B.26 Core Language Model: Representation Record Subsystem. . . . XXXII
B.27 Core Language Model: Representation Subsystem (1). XXXIII
B.28 Core Language Model: Representation Subsystem (2). XXXIV
B.29 Core Language Model: Representation Concrete Type Subsystem.XXXV
B.30 Core Language Model: Representation Scale Subsystem. XXXVI
B.31 Core Language Model: Representation Indicator Subsystem. . . XXXVII
B.32 Core Language Model: Animation Subsystem (1). XXXVIII
B.33 Core Language Model: Animation Subsystem (2). XXXIX
B.34 Core Language Model: Animation Subsystem (3). XL
B.35 Core Language Model: Animation Subsystem (4). XLI
B.36 Core Language Model: Interaction Subsystem. XLII
B.37 Core Language Model: Interaction Subsystem (Key Code Con-

stants). XLIII
B.38 Core Language Model: Interaction Effect Subsystem (1). XLIV
B.39 Core Language Model: Interaction Effect Subsystem (2). XLV
B.40 Core Language Model: Elementary UI Component Root. XLVI
B.41 Core Language Model: Complex UI Component Root. XLVII
B.42 Core Language Model: Alarm Control Widget. XLVIII
B.43 Core Language Model: Button Widget. XLIX
B.44 Core Language Model: Check Box Widget. L
B.45 Core Language Model: Drop Down Widget. LI
B.46 Core Language Model: Ellipse Geometrical Object. LII
B.47 Core Language Model: Gauge Widget. LIII
B.48 Core Language Model: Image Widget. LIV
B.49 Core Language Model: Input Widget. LV
B.50 Core Language Model: Polyline Geometrical Object. LVI
B.51 Core Language Model: Polygon Geometrical Object. LVII
B.52 Core Language Model: Radio Button Widget. LVIII
B.53 Core Language Model: Slider Widget. LIX
B.54 Core Language Model: Table Widget (Structure). LX
B.55 Core Language Model: Table Widget (Properties). LXI
B.56 Core Language Model: Text Label Widget. LXII

xxiv

B.57 Core Language Model: Tree Widget (Structure). LXIII
B.58 Core Language Model: Tree Widget (Properties). LXIV
B.59 Core Language Model: Trend Widget. LXV
B.60 Core Language Model: Client Data Model Root. LXVI
B.61 Core Language Model: Logical Data Perspective. LXVII
B.62 Core Language Model: Alarm Perspective (1). LXVIII
B.63 Core Language Model: Alarm Perspective (2). LXIX
B.64 Core Language Model: Technical Data Perspective Root. LXX
B.65 Core Language Model: Technical Data Perspective (OPC XML-

DA). LXXI
B.66 Core Language Model: Technical Data Perspective (Modbus TCP).LXXII
B.67 Core Language Model: Technical Data Perspective (OPC UA). . LXXIII
B.68 Core Language Model: Technical Data Perspective (OPC UA,

Data Types 1). LXXIV
B.69 Core Language Model: Technical Data Perspective (OPC UA,

Data Types 2). LXXV
B.70 Core Language Model: Technical Data Perspective (IfaNxtCon-

trolWs). LXXVI
B.71 Core Language Model: Technical Data Perspective (Generic

Server). LXXVII

C.1 Process Industries Case Study: Generated Python based runtime
solution (non-sandboxed). It can be seen that the operating
faceplate is blocked. To demonstrate multilingualism, the user
interface language was switched to German. LXXIX

C.2 Process Industries Case Study: Generated Python based runtime
solution (non-sandboxed). It can be seen that the operating
faceplate is released and, thus, interventions in the process are
allowed. LXXX

C.3 Process Industries Case Study: Generated HTML based runtime
solution (sandboxed). It can be seen that the operating faceplate
is blocked. Additionally, the button to request the operation
token is also blocked due to interventions by other operators
(e.g. through the visualization solution shown in Figure C.2).
To demonstrate multilingualism, the user interface language was
switched to English. LXXX

xxv

C.4 Process Industries Case Study: Generated HTML based runtime
solution (sandboxed). It can be seen that the operating faceplate
is released and, thus, interventions in the process are allowed. . LXXXI

C.5 Process Industries Case Study: After applying a horizontal CUI-
to-CUI transformation and a subsequent vertical CUI-2-FUI trans-
formation, the resulting solution can be used on the iPhone. These
screenshots show the solution without manually improving the
model after translating it into this new context of use. LXXXI

C.6 Factory Automation Case Study: Generated Python based run-
time solution (non-sandboxed). LXXXII

C.7 Factory Automation Case Study: Generated HTML based run-
time solution (sandboxed). LXXXIII

C.8 Energy Supply System Case Study: Generated Python based run-
time solution (non-sandboxed). This figure presents the topmost
hierarchy level of the energy supply network. It can be seen that
alarms were thrown indicating that the network has a too high
load. LXXXIV

C.9 Energy Supply System Case Study: Generated Python based
runtime solution (non-sandboxed). This figure presents a view on
the energy supply network of “Building A”. It can be seen that
the reason for the alarms is located in “Unit 2”. LXXXIV

C.10 Energy Supply System Case Study: Generated Python based
runtime solution (non-sandboxed). This figure presents a view
on the energy supply network of “Unit 2” in “Building A”. The
reason for the alarms could be identified and eliminated. Hence,
the alarms are no longer in active state, even though they are
not acknowledged. LXXXV

C.11 Energy Supply System Case Study: Generated HTML based
runtime solution (sandboxed). This figure presents the topmost
hierarchy level of the energy supply network. It can be seen that
alarms were thrown indicating that the network has a too high
load. LXXXV

C.12 Energy Supply System Case Study: Generated HTML based
runtime solution (sandboxed). This figure presents a view on the
energy supply network of “Building A”. It can be seen that the
reason for the alarms is located in “Unit 2”. LXXXVI

xxvi

C.13 Energy Supply System Case Study: Generated HTML based
runtime solution (sandboxed). This figure presents a view on the
energy supply network of “Unit 2” in “Building A”.The reason
for the alarms could be identified and eliminated. Hence, the
alarms are no longer in active state, even though they are not
acknowledged. LXXXVI

C.14 Health Care Case Study: Generated Python based runtime so-
lution (non-sandboxed). Patients has to answer questions about
their recent habits. LXXXVII

C.15 Health Care Case Study: Generated Python based runtime so-
lution (non-sandboxed). First, a patient decided to fill in the
number of tablets recently consumed. LXXXVIII

C.16 Health Care Case Study: Generated Python based runtime solu-
tion (non-sandboxed). After providing the answer about medica-
tion, this option disappeared from the screen and, thus, it cannot
be selected no longer. LXXXIX

xxvii

List of Tables

3.1 Classes of common properties that were identified during investi-
gating visualization systems as well as running solutions. 38

3.2 Various possibilities to alter widgets. 39
3.3 Configurable interaction effects. 40
3.4 Characteristic parameters of different data server specifications. 47
3.5 Characteristic parameters to be considered for the definition of

Alarms. 51
3.6 Aspects to be considered when presenting alarms to operators. . 52
3.7 Different kinds of animation properties for a precise specification

a UI Components behavior. 57
3.8 Interaction properties for modeling UI Components which are

sensible to interactions of human operators. 58
3.9 Elementary UI Components with their specific characteristics. . 60
3.10 Complex UI Components. 62

5.1 Supported model annotation properties. 103

xxix

List of Listings

4.1 C struct. 88
4.2 Java class. 88
4.3 General construction rule of the text based concrete syntax nota-

tion. 89
4.4 Example configuration of the Logical Data Perspective using the

concrete syntax notation. 89

6.1 Technical Data Perspective . 114
6.2 Logical Data Perspective . 114
6.3 Alarm Perspective . 114
6.4 Setting a local Data Item through a Button’s interaction property. 116
6.5 Altering a Button’s Accessibility property. 116
6.6 Button Interaction for realizing an atomic write operation. . . 118
6.7 Defining the alarms to be presented in a particular Alarm Control

widget. 118
6.8 Platform specific Boundary realization ensuring to send a Signal

after a certain time slot expired. 119
6.9 Excerpt of the Technical Data Perspective showing the con-

figuration of the newly integrated data provider. 124
6.10 Excerpt of the Technical Data Perspective showing a configura-

tion of the sample network presented in Figure 6.8 through the
Generic Server terminology. 128

xxxi

Nomenclature
API Application Programming Interface
ASL Action Specification Language
ATL ATLAS Transformation Language
AUI Abstract User Interface
CAE Computer Aided Engineering
CAEX Computer Aided Engineering eXchange
CRF Cameleon Reference Framework
CUI Concrete User Interface
DES Discrete Event System
DSL Domain Specific Language
EBNF Extended Backus-Naur Form
EGL Epsilon Generation Language
EOL Epsilon Object Language
EVL Epsilon Validation Language
FCML Facility Control Markup Language
FDA U.S. Food and Drug Administration
FLEPR Flexible Workflow for early User Interface Prototypes
FUI Final User Interface
FUML Semantics of a Foundational Subset for Executable UML Models
GUI Graphical User Interface
HCI Human Computer Interaction
HMI Human Machine Interface
HTML Hypertext Transfer Markup Language
JET Java Emitter Templates
M2M Model to Model (Transformation)
M2T Model to Text (Transformation)
MARIA Model-based lAnguage foR Interactive Applications
MBUID Model Based User Interface Development
MDA Model Driven Architecture
MDSD Model Driven Software Development
MOF Meta Object Facility
OAL Object Action Language

xxxiii

OCL Object Constraint Language
OMG Object Management Group
OPC OLE for Process Control (Nowadays, OPC is used without refer-

ring to an abbreviation, as the importance of the OLE interface
decreases.)

OPC UA OPC Unified Architecture
PLC Programmable Logic Controller
PUC Personal Universal Controller
QVT Query/Views/Transformations
SCADA Supervisory Control and Data Acquisition
Scrall Starr’s Concise Relational Action Language
SOAP Simple Object Access Protocol
SQL Structured Query Language
SVG Scalable Vector Graphics
T&C Tasks and Concepts
UCD User Centered Design
UI User Interface
UIML User Interface Markup Language
UML Unified Modeling Language
UsiXML User Interface Markup Language
VBA Visual Basic for Applications
WSDL Web Services Description Language
XIML eXtensible Interface Markup Language
XMI XML Metadata Interchange
XML eXtensible Markup Language
XSD XML Schema Definition
XSL eXtensible Stylesheet Language
XSLT XSL Transformation
XUL XML User Interface Language
XVCML eXtensible Visualization Components Markup Language

xxxiv

Chapter 1

Introduction
Automation systems consist of technical processes and the required automation
equipment [Lunze, 2008]. A technical process is, according to Johannsen (1993),
a physical-technical or a chemical-technical procedure with material, energy,
and/or information flows at input and output. Johannsen (1993) instanced
a procedure on a milling machine with a raw workpiece and electrical energy
as input, the processed workpiece, chips, and thermal energy as output. The
automation equipment is composed of devices required to transform material
and energy. These devices impact on the technical process, e.g. a servo motor
moving the milling head.
Human operators are responsible for a safe operation of an automation sys-

tem [Johannsen, 1993]. Hence, it is monitored and operated by human operators
through appropriate Human Machine Interfaces (HMI), constituting the con-
nection between the human operator and the automation system: It allows
for monitoring the operative states of the automation system by presenting
relevant information that have appropriately been prepared. Furthermore, it
consists of input devices for entering information. In this way, human operators
are enabled to have an impact on the technical process according to its actual
state and given goals. Sheridan (1992) makes a distinction between Human
Computer Interaction (HCI) and Supervisory Control : While in HCI one uses
computers to operate other computers or databases as end objects, in Super-
visory Control computers are only mediators between a technical process and
human supervision. Sheridan (1992) defines Supervisory Control as follows: “[...]
one or more human operators are intermittently programming and continually
receiving information from a computer that itself closes an autonomous control
loop through artificial effectors and sensors to the controlled process or task
environment”1. Figure 1.1 shows the basic paradigm behind this definition.
Appendix A exemplarily presents concrete supervisory control solutions.

1Cassandras and Lafortune (1999) introduce Supervisory Control in automata theory for a

1

Chapter 1 Introduction

Co
nt
ro
lle
r

Local
Computer

Remote
Computer

D
is
pl
ay

Ac
tu
at
or

Se
ns
or

Barrier

Technical
Process

SCADA Application

Figure 1.1: Basic Supervisory and Control Paradigm (based on [Sheridan, 1992]).

A remote computer closes a control loop by observing values actually mea-
sured by sensors and by setting particular actuators according to these values
and given (control) programs. Human operators supervise this process through
graphical displays representing the technical instrumentation and employ ap-
propriate controllers to modify parameters in the remote programs. Both, the
operator and the remote device, might be separated by “a barrier of distance,
time, or inconvenience” [Sheridan, 1992]. To implement this general concept,
Programmable Logic Controllers (PLC) that act independently and close to
the process are usually used as remote computers. Supervisory Control and
Data Acquisition (SCADA) applications constitute the local part depicted in
Figure 1.1. Bailey and Wright (2003) refer SCADA “to the combination of
telemetry and data acquisition”: It encompasses the collection of relevant infor-
mation, carrying out any necessary analysis and preparing that information to be
presented on a number of operator screens or displays. Required control actions
are then conveyed back to the process. A SCADA application is, according to
Daneels and Salter (1999), a purely software package that is positioned on top
of hardware. Thus, SCADA applications form the Human Machine Interface
for process visualization.

Definition 1.1: A Visualization System is a software tool to develop SCADA
applications. A Visualization Solution is a particular SCADA application tailored

given Discrete Event System (DES) “whose behavior must be modified by feedback control
in order to achieve a given set of specification.” This DES is modeled by a graph G with an
event set E. If the behavior of G is not satisfactory, it must be controlled by a supervisor
S. S observes all events that G executes and then, “S tells G which events in the current
active event of G are allowed next.”

2

1.1 Problem Statement and Aims

to supervise a concrete technical process, thus being the User Interface to this
process.

In the following, Section 1.1 explains the necessity for a new approach to the
development of visualization solutions and introduces the solution proposed in
this thesis. Section 1.2 provides an overview of structure of this thesis.

1.1 Problem Statement and Aims

Vital requirements for graphical human machine interfaces for process control are
among others efficiency, ergonomics, and that they “shall be so designed as to
allow the operator to perform [her] activities in accordance with [her] capabilities,
skills and needs, as required to achieve [her] objectives” [VDI/VDE, 2005]. For
this purpose, the guideline VDI/VDE (2005) recommends to involve operators
into the design phase. Therewith it proposes a User Centered Design (UCD)
approach, thus entailing a significant amount of the overall system design and
development effort. On the other hand, platforms executing SCADA applications
in industrial automation are characterized by diversity as illustrated in Figure 1.2.

Platform (1)

(a)

Platform (2)

(b)

Platform (3)

(c)

Periphery

Hardware

Operating System

Runtime Environment

SCADA Solution

Figure 1.2: Illustration of three SCADA applications operated on different plat-
form configurations: (a) shows an embedded device with a native SCADA
realization to be exploited close to the process, (b) presents a mobile version
for remote access, and (c) illustrates a classical installation of a SCADA ap-
plication to be operated on a workstation in control rooms. These platform
configurations can also be combined.

Currently, visualization solutions are developed using platform specific tools
and terminologies, such as a specific programming language. As a consequence,
operative characteristics are strongly merged with aspects of their technical
realization. Thus, a human machine interface has to be redeveloped for and

3

Chapter 1 Introduction

tested on each platform using different and probably incompatible tools, even
if the operative characteristics remain the same. Moreover, as Menzel et al.
(2003) state, the situation is exacerbated by the fact that standard end-user
platforms are used almost exclusively. These platforms are characterized by
short innovation cycles decreasing the life time of SCADA components to less
than five years due to regular releases of new software versions [Menzel et al.,
2003]. Given the fact that industrial facilities are required to be in operation
for decades and given the complexity of SCADA applications in order to ensure
correctness, reliability, and usability, new design approaches are demanded to
suit the rapid development of the platforms.
Model driven techniques are promising design approaches, as they express op-

erative characteristics through a platform independent terminology that is based
on models. Technical aspects are separated into transformations as carriers of
platform specific terminologies. For the given situation, model driven approaches
enable to capture the operative characteristics of a SCADA solution by creating
a platform independent model. Deploying this solution to a particular platform
requires an appropriate transformation that translates the platform independent
terminology, provided by the model, into a platform specific terminology. If a
compatible platform evolves over time, e.g. through an update of the operating
system, causing incompatibility or to equip another or a new platform with this
existing SCADA solution, only suitable transformation is required while the
respective model remains unchanged. Consequently, operational characteristics
need to be expressed and tested for correctness, reliability, and usability only
once. Tested and correct transformations are expected to produce always correct
platform specific runtime solutions. Additionally, model driven approaches offer
the following more general benefits:
(1) Functional aspects can be reused in future projects, even if they aim at

another platform.
(2) Technical realizations can be reused in future projects, even if the func-

tionality is a different one.
(3) High-quality and reproducible solutions can be generated through tested

transformations.
(4) Various technical solutions can automatically be created from a single

functional description, simply by invoking another transformation.
(5) The repertoire of required tools can be slimmed down.
Nichols, Chau, and Myers (2007) have already proven the viability of model

driven approaches for the development of user interfaces for office applica-
tions. Aquino et al. (2010) additionally proved that model driven development

4

1.1 Problem Statement and Aims

procedures are promising even for automatically deploying user interfaces to
different devices. Visualization solutions in industrial environments, however, are
characterized by specific requirements and constraints that the aforementioned
approaches to model office solutions do not meet, mainly due to the fact that
office applications are connected to databases, whereas industrial solutions are
connected to technical processes.

This thesis transfers the aforementioned advantages of model-driven
approaches into the domain of industrial production automation2.
It proposes a Domain Specific Language which enables the develop-
ment of sustainable visualization solutions. Other than model-driven
approaches for office applications, this modeling languages is tailored
to meet the requirements of industrial automation: (1) It defines
a sufficient set user interface components with appropriate repre-
sentation, animation, and interaction properties. (2) It provides
a solid abstraction to the variety of industrial automation specific
process communication means. (3) It contains an Executable UML
realization to take into account the diversity of industrial processes
and their individual requirements.

This thesis contributes the domain specific modeling workbench Movisa, as
depicted in Figure 1.3: Movisa models capture operative characteristics of
visualization solutions. Transformation rules capture aspects of the technical
realization. The verification tool ensures the correctness of models and the
transformation tool processes Movisa models either to modify these models
or to automatically create runtime artifacts. This complexity is encapsulated
behind a high-fidelity modeling interface to be exploited by domain experts.
Engineering tools are able to populate Movisa models through low-fidelity tool
interface.

2Johannsen (1993) brings the fields of process industries, factory automation, and energy
supply systems under the umbrella of production automation together.

5

Chapter 1 Introduction

Movisa Language Workbench

Verification

Transformation

Transformation
Rules

Verification
Rules

Visual
Feedback

Low-fidelity
Tool

Interface

High-fidelity
Modeling
Interface

Runtime
Artifacts

Movisa
Model

Domain
Knowledge

☑
Requirements

Plant
Specification

Domain Expert

Plant
Specification

Engineering
Tool

Deployed
Visualization

Solution

Runtime
Environment

Figure 1.3: Basic concept, architecture, and functionality of the proposed Movisa
modeling workbench.

1.2 Thesis Structure

This thesis is structured as follows:
Chapter 2 gives an overview of the state of the art and its particular back-

ground. This chapter concludes with a detailed requirements definition
used for pointing out deficiencies of the state of the art approaches and
how this thesis contributes to them.

Chapter 3 formalizes the Language Model of the Domain Specific Language
Movisa by abstracting its Target Domain into the Core Language Model.
Section 3.3 explains Language Constraints and Section 3.4 presents the
Language Behavior definition.

Chapter 4 works out and discusses a concrete syntax notation that enables
modelers to work and to think their domain.

Chapter 5 discusses required aspects of a modeling workbench for creating, us-
ing, and maintaining models of the language that was created in Chapter 3
which encapsulates the complexity of the model driven approach.

Chapter 6 evaluates the feasibility of the Movisa modeling workbench by
exploiting it on representative case studies.

Chapter 7 elaborates a transformation based framework enabling to incorpo-
rate the Movisa modeling workbench in higher-level engineering proce-
dures.

6

1.2 Thesis Structure

Chapter 8 draws the conclusions of the findings of the previous chapters.

7

