
Andrey Morozov
Dual­graph Model for Error Propagation Analysis of

Mechatronic Systems

Dual­graph Model for Error Propagation Analysis of
Mechatronic Systems

Andrey Morozov

Beiträge aus der Automatisierungstechnik

Dresden 2012

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.
Bibliographic Information published by the Deutsche Bibliothek
The Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibiograpic data is available in the internet at
http://dnb.ddb.de.
Zugl.: Dresden, Techn. Univ., Diss., 2012
Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„Dual­graph Model for Error Propagation Analysis of Mechatronic Systems“
von Andrey Morozov überein.

© Jörg Vogt Verlag 2012
Alle Rechte vorbehalten. All rights reserved.
Gesetzt vom Autor
ISBN 978­3­938860­56­4
Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany
Phone: +49­(0)351­31403921
Telefax: +49­(0)351­31403918
e­mail: info@vogtverlag.de
Internet : www.vogtverlag.de

Technische Universität Dresden

Dual-graph Model for Error Propagation Analysis of
Mechatronic Systems

Andrey Morozov

von der Fakultät Elektrotechnik und Informationstechnik

der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Dipl.-Math.Röbenack

Gutachter: Prof. Dr. techn. Janschek Tag der Einreichung 02.03.2012

Prof. Dr. Fetzer Tag der Verteidigung 04.07.2012

This work has been supported by the

Erasmus Mundus External Co-operation Window Programme

of the European Union.

Abstract

Error propagation analysis is an important part of a system development process. This

thesis addresses a probabilistic description of the spreading of data errors through a

mechatronic system. An error propagation model for these types of systems must use

a high abstraction layer that allows the proper mapping of the mutual interaction of

heterogeneous system components such as software, hardware, and physical parts.

A literature overview reveals the most appropriate error propagation model that is based

on Markovian representation of control flow. However, despite the strong probabilistic

background, this model has a significant disadvantage. It implies that data errors always

propagate through the control flow. This assumption limits model application to the

systems, in which components can be triggered in arbitrary order with non-sequential

data flow.

A motivational example, discussed in this thesis, shows that control and data flows

must be considered separately for an accurate description of an error propagation process.

For this reason, a new concept of system analysis is introduced. The central idea is

a synchronous examination of two directed graphs: a control flow graph and a data

flow graph. The structures of these graphs can be derived systematically during system

development. The knowledge about an operational profile and properties of individual

system components allow the definition of additional parameters of the error propagation

model.

A discrete time Markov chain is applied for the modeling of faults activation, errors

propagation, and errors detection during operation of the system. A state graph of this

Markov chain can be generated automatically using the discussed dual-graph represen-

tation. A specific approach to computation of this Markov chain makes it possible to

obtain the probabilities of all erroneous and error-free system execution scenarios. This

information plays a valuable role in development of dependable systems. For instance, it

can help to define an e↵ective testing strategy, to perform accurate reliability estimation,

and to speed up error detection and fault localization processes.

This thesis contains a comprehensive description of a mathematical framework of the

new dual-graph error propagation model, several methods for error propagation analysis,

and a case study that demonstrates key features of the application of the presented er-

ror propagation model to a typical mechatronic system. A numerical evaluation of the

mechatronic system in question proves applicability of the introduced concept.

III

Acknowledgements

This thesis was written during my research activity at Institute of Automation at

the Dresden University of Technology. It would not have been accomplished without a

contribution of the following persons.

First of all, I would like to express my sincere gratitude to my mentor and advisor,

Professor Dr. Techn. Klaus Janschek. His wise guidance, detailed analysis of my work,

scientific and emotional support helped me to proceed through the doctoral program and

complete this dissertation.

This work would have never been possible without Professor Dr. Nafissa Yussupova,

my long-time advisor from the Ufa State Aviation Technical University. She provided

the possibility to obtain the funding for this research project and guided me during these

years.

I would like to specially thank Professor Dr. Christof Fetzer from the Computer Sci-

ence Department of TU Dresden for his interest in my work and a number of valuable

discussions.

Last, but not least, I would like to thank my wife and parents. I’m thankful to be the

son of two loving and supportive people. While working on this thesis, I’ve spent two

very long years apart from my wife. I deeply appreciate her patience and believe that I

will make up the leeway.

V

Contents

1. Introduction 1

2. State of The Art 5

2.1. System Reliability . 5

2.2. Classical Error Propagation Analysis . 6

2.2.1. Hardware Error Propagation Analysis 7

2.2.2. Software Error Propagation Analysis 7

2.3. Error Propagation Models . 8

2.3.1. Abdelmoez’s Model . 9

2.3.2. Hiller’s Model . 11

2.3.3. Mohamed’s Model . 13

2.3.4. Cortellessa’s Model . 14

2.4. Summary . 16

3. General Concept 19

3.1. Motivational Example . 19

3.2. Impact of Control and Data Flows . 20

3.3. Outline . 22

4. Error Propagation Model 25

4.1. Basic Error Propagation Model . 25

4.1.1. Definitions . 26

4.1.2. Formal System Description . 27

4.1.3. Control Flow Graph . 29

4.1.4. Data Flow Graph . 30

4.1.5. System Elements . 31

4.2. Dual-graph System Representation . 34

4.3. Assumptions and Restrictions . 36

4.4. Obtaining of Required Parameters . 37

4.5. Extended Error Propagation Model . 38

4.5.1. Formal Definition . 39

4.5.2. Probabilistic Table of Properties . 40

4.5.3. Example of Nested Error Propagation Model 41

5. Path-based Error Propagation Analysis 43

5.1. Control Flow Path-based Method . 43

5.1.1. Method Description . 43

VII

5.1.2. Algorithm . 46

5.1.3. Discussion . 48

5.2. Markov-based Control Flow Analysis . 48

5.2.1. Markovian Representation of CFG 48

5.2.2. Probability of Elements Execution 50

5.2.3. Mean Number of Executions . 50

5.2.4. First Execution Probability . 51

5.2.5. Unconditional Fault Activation Probability 52

5.3. Data Flow Path-based Method . 53

5.3.1. Error Propagation Through a DFG Path 54

5.3.2. Particular Example of Approach Application 55

6. State-based Error Propagation Analysis 59

6.1. Definitions . 60

6.2. Error Propagation Graph . 60

6.2.1. Nodes . 61

6.2.2. Arcs . 64

6.2.3. Discussion . 65

6.3. Algorithm for EPG Generation . 67

6.3.1. Input parameters . 68

6.3.2. Output parameters . 68

6.3.3. Body of the Algorithm . 68

6.4. Application of the State-based Approach 72

6.4.1. System Final States . 72

6.4.2. Probabilities of Execution Scenarios 72

6.4.3. Solution of Particular Problems . 73

7. Computational Challenges 77

7.1. State Space Exponential Growth . 77

7.2. Computation Methods for Large Markov Chains 79

7.2.1. Fast Computation Methods . 79

7.2.2. Markov Chain State Space Reduction 81

7.3. Smart Markov Chain Generation . 82

7.3.1. Nested Error Propagation Models 82

7.3.2. Customized Error Propagation Analysis 83

7.3.3. Low Probability Limitation . 85

8. Case Study 87

8.1. Description of Reference System . 87

8.2. Case Study Overview . 87

8.3. System Level Analysis . 89

8.4. Element Level Analysis . 92

8.5. Application of Error Propagation Model 93

8.6. Experiments . 96

8.7. Result Comparison . 97

9. Conclusion 101

9.1. Achieved Results . 101

9.2. Possible Follow-up Activities . 103

A. Markov Chains 105

B. Error Propagation Framework 111

C. Technical Details of Experimental Setup 119

List of Abbreviations

ASR Architectural Service Route

CFG Control Flow Graph

CFT Component Fault Tree

COTS Commercial of the Shelf

CTMC Continuous Time Markov Chain

DFG Data Flow Graph

DTMC Discrete Time Markov Chain

EC Error Correction

ECM Error Containment Module

EDB Error Detection Behavior

EDM Error Detection Mechanism

EDP Error Detection Probability

EM Error Message

EPA Error Propagation Analysis

EPF Error Propagation Framework

EPG Error Propagation Graph

EPM Error Propagation Model

EPP Error Propagation Probability

ERM Error Recovery Mechanism

ET Event Tree

FAP Fault Activation Probability

FMEA Failure Modes and E↵ect Analysis

XI

FPTC Fault Propagation and Transformation Calculus

FPTN Failure Propagation Transformation Notation

FS Fail-stop

FTA Fault Trees Analysis

HAZOP Hazard and Operability Studies

HiP-HOPS Hierarchically Performed Hazard Origin and

Propagation Studies

IPA Interface Propagation Analysis

MNE Mean Number of Executions

MTBF Mean Time between Failures

MTTF Mean Time to Failure

PIE Propagation, Injection, and Execution Techniques

PTP Probabilistic Table of Properties

SOA Service-oriented Architecture

SSR State Space Reduction

SWIFI Software Implemented Fault Injection

SysML Systems Modeling Language

TPM Transition Probability Matrix

UML Unified Modeling Language

List of Figures

1.1. Three main aspects of the dependability research domain: attributes, means,

and threats. 2

1.2. The fault-error-failure chain: Fault activation leads to error occurrence,

error propagation out of system boundaries results in a failure, the failure

can be the cause of further errors. 2

1.3. An example that describes a system fault, activation of this fault, occur-

rence of a data error, and the propagation of this error that results in a

system failure. 3

3.1. A part of a collision avoidance system of a mobile robot. 20

3.2. Three possible scenarios of error propagation through the collision avoid-

ance system. 21

3.3. A general structure of the presented approach to error propagation analysis. 23

4.1. An example of a control flow graph. 29

4.2. An example of a data flow graph. 31

4.3. Data inputs and outputs of a system element. 32

4.4. Fault activation in a system element. 32

4.5. Error propagation through a system element. 33

4.6. Error detection in a system element. 33

4.7. A dual-graph representation of an example of an error propagation process. 35

4.8. An example of a data flow graph of the extended dual-graph error propa-

gation model. 40

4.9. An example of a nested error propagation model. 42

5.1. A reference example of the control flow path-based method to error prop-

agation analysis. 44

5.2. Reduced data flow graphs for the paths of the control flow graph. 45

5.3. A reference control flow graph for the estimation of element execution prob-

ability. 49

5.4. A reference example of a control flow graph for estimation of an uncondi-

tional fault activation probability. 52

5.5. An example of error propagation through a data flow path 55

6.1. A control flow graph, a data flow graph, and a list of the probabilistic

parameters of elements of a dual-graph error propagation model. 61

6.2. A correspondence between a system state (left) and a node of an EPG (right). 62

XIII

6.3. An example of an arc of the error propagation graph. 64

6.4. A part of an EPG generated using the reference EPM. 66

7.1. Approaches to the computation time decrease: (a) fast methods for Markov

chain computation, (b) Markov chain state space reduction, (c) nested error

propagation models, (d) customized error propagation analysis, and (e) low

probability limitation. 78

7.2. Exponential growth of a state space of the discrete time Markov chain with

an increase in the number of system elements. 79

7.3. Direct computation of the DTMC and an iterative approach. 80

7.4. Example of state space reduction of the absorbing DTMC. 82

7.5. Step-wise generation of an error propagation graph. 86

8.1. The ”caterpillar mobile robot” reference system. 88

8.2. A block diagram of a control loop of the ”caterpillar mobile robot” reference

system. 89

8.3. A structure of the case study. 90

8.4. The UML activity diagram of the ”caterpillar mobile robot” reference system. 91

8.5. Control flow graph and data flow graph of the reference system with fault

activation, error propagation, and error detection probabilities. 92

8.6. The process of the discrete time Markov chain generation. The blue curve

shows the total number of generated states, and the green curve shows the

number of final states among the generated states. 94

8.7. Dependance between accuracy and computation time for an iterative ap-

proach to computation of absorbing probabilities. 95

8.8. Dependance between accuracy and number of generated states for an iter-

ative approach to computation of absorbing probabilities. 96

8.9. Three of the most frequent execution scenarios of the reference system. . . 97

A.1. A Markov chain is a stochastic process with the discrete state space that

satisfies the Markov property. 107

B.1. A UML class diagram of the Error Propagation Framework. 112

B.2. An example of control and data flow graphs generated using the PyGraphviz

and the EPF. 115

B.3. An example of an error propagation graph generated using the PyGraphviz

and the EPF. 116

B.4. A partially reduced error propagation graph generated using the PyGraphviz

and the EPF. 117

C.1. A screen shot of the graphic user interface of mobile robot control software. 121

List of Tables

2.1. The comparison table of the suitable models for the error propagation anal-

ysis of mechatronic systems. 18

4.1. A general structure of a probabilistic table of properties. 41

4.2. An example of a probabilistic table of properties of a regular (not com-

pound) element ei. 42

8.1. Comparison of the experimental results and the prediction of the EPM. . . 98

XV

List of Algorithms

1. The main part of the EPG generation algorithm 69

2. The part of the EPG generation algorithm for regular element processing. . 70

3. The part of the EPG generation algorithm for final element processing. . . 71

4. An algorithm for iterative computation of the absorbing probabilities. . . . 80

XVII

1. Introduction

The research results presented in this thesis belong to a rather young scientific domain

- system dependability. By this reason, in various papers devoted to error propagation

analysis, di↵erent terms can describe similar entities.

The word ”error” has many definitions. Many more meanings of this term exist in

common use. In everyday life, ”error” acts as a synonym for the word ”mistake.” It usually

means that someone has performed an action, which has led to unintended consequences,

or that the result of this action di↵ers from the expected one. In science, particularly

in the applied mathematics, the term ”error” does not mean a mistake. It describes

uncertainty in imperfect empirical measurement or data processing. In this case, an error

estimates how close this measurement is to a real value.

However, in this work, the term ”error” is used in a more general context that fits for

the engineering domain better. This thesis adheres to the definition proposed by J.C.

Laprie in his book ”Dependability: Basic Concepts and Terminology” [LAK92]. The

original English text of this book is translated into French, German, Italian, and Japanese

languages. Computer science and engineering communities all over the world accept this

concept. A brief overview of the dependability research domain helps to distinguish the

term ”error” from other similar terms.

Dependability is the ability of a system to deliver a service that can be justifiably

trusted. The service, delivered by a system, is its behavior as it is perceived by its user.

A user is defined as another system (physical, human) that interacts with the former. J.C.

Laprie describes dependability from three points of view: the attributes of dependability,

the means by which dependability is attained, and the threats to dependability.

This description is represented by the so-called ”dependability tree,” shown in Fig-

ure 1.1. The presented research is focused on the threats to the system: faults, errors,

and failures. Formal definitions of these terms follow.

Fault is a defect in the system that can be activated and cause an error.

Error is an incorrect internal state of the system, or a discrepancy between the intended

behavior of a system and its actual behavior.

Failure is an instance in time when the system displays behavior that is contrary to its

specification.

Faults, errors, and failures operate according to the chain, shown in Figure 1.2. A

broken wire, an electrical short, and a software bug are all di↵erent faults. Activation of a

fault leads to the occurrence of an error. Execution of the line of code that contains a bug,

an attempt to send a signal via a corrupted connector, or utilization of a broken hardware

1

1. Introduction

Dependability

Attributes

Means

Threats

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Faults
Errors
Failures

Figure 1.1.: Three main aspects of the dependability research domain: attributes, means,

and threats.

part are the examples of faults activation. An error may act in the same way as a fault;

it can create further error conditions. An incorrect physical state of a system, a wrong

value of a software variable, or a false signal are di↵erent errors that can occur during

system operation. The invalid internal system state, generated by an error, may lead to

another error or to a failure. Failures are defined according to the system boundary. If

an error propagates outside the system, a failure is said to occur. Since output data from

one system may be transferred to another, a failure of the first system may propagate

into another system as a fault.

Error FailureFault activation propagation Faultcausation

System A System B

Figure 1.2.: The fault-error-failure chain: Fault activation leads to error occurrence, error

propagation out of system boundaries results in a failure, the failure can be

the cause of further errors.

2

read A read B

C = A + B

D = 2C

return D

Original design

read A read B

C = A - B

D = 2C

return D

Faulty implementation

A B

C

D

A B

C

D

Expected
behavior:

Real
behavior:

A = 5
B = 7

D = 24

C = 12

Result 24

A = 5
B = 7

D = -4

C = -2

Result -4

Fault

Propagation

Propagation

System boundary

System boundary

Observable outputFailure

Error

Error

Error

Figure 1.3.: An example that describes a system fault, activation of this fault, occurrence

of a data error, and the propagation of this error that results in a system

failure.

Figure 1.3 gives an example of fault activation and error propagation. It describes a

simple system that reads two variables, A and B, processes them, and returns a result

variable, D. An intended design of this system is shown in the left side of the figure. The

right side of this figure shows a faulty implementation that contains a block C = A � B

instead of C = A + B. This particular bug is a typical fault within the system design.

Activation of this fault happens with execution of this block. It results in an incorrect

value of the variable C: C equals �2 instead of the expected 12. This deviation is an

error that occurred during system operation. The variable D also takes a wrong value,

because of incorrect C. It demonstrates propagation of the first error that leads to the

occurrence of another error. Assume that an output of the system is observable by a user

or another system. In this case, the incorrect value of D is visible and can be considered a

failure of the system. However, it is not necessary that an error always results in a system

failure. It might be masked, because of a specific system design, or detected by a user or

an error detection mechanism. After error detection, system operation can be stopped to

prevent further error propagation, or the error can even be corrected.

Analysis of fault activation, error propagation, and error (or failure) detection is defined

in this thesis as error propagation analysis. The results of this analysis is extremely helpful

in a wide range of analytical tasks associated with dependable systems development. For

example, the error propagation analysis gives sound support for reliability evaluation,

because error propagation has significant influence on the system behavior in critical

situations. The error propagation analysis is a necessary activity for safety system design.

It helps to estimate the likelihood of error propagation to hazardous parts of the system

3

1. Introduction

and identify parts of the system that should be protected with error detection or error

recovery mechanisms more strongly than the others. Another possible application area is

system testing and debugging. An accurate error propagation analysis assists selecting an

appropriate testing strategy. It helps to identify the most critical parts of the system (from

either reliability or safety points of view) and to generate such a set of test-cases that will

stimulate fault activation in these particular parts and allow the detection of occurred

errors. Probabilistic error propagation analysis can be used for system diagnostics. In

the case of error detection in observable system outputs, it helps to trace back an error

propagation path up to an error-source. It speeds up the error localization process, system

testing, and debugging.

In real systems, fault activation and further error propagation are very complex pro-

cesses. This causes the need for a strong mathematical framework to perform an accurate

error propagation analysis. Specifics of the mechatronic domain brings additional com-

plexity. The fact is that mechatronic systems incorporate the assembly of heterogeneous

components (mechanical, electrical, computer, and information technology) with various

mutual interactions. The goal of mechatronic system design is to ensure a proper and

coordinated operation of these elements within a feedback structure under all possible

operational conditions. According to a book ”Mechatronic Systems Design: Methods,

Models, Concepts” by K. Janschek [Jan11], one of the big challenges of mechatronics

is the use of appropriate models, which describe this mutual interaction on a common

abstract layer. The error propagation analysis, as an essential part of the mechatronic

system design, also requires a specific model. This model must be able to operate with

abstract entities to represent various properties of the heterogenous mechatronic compo-

nents. Development of a su�cient error propagation model is the main challenge of this

thesis.

4

2. State of The Art

This chapter represents the state of the art in studies that concern error propagation

issues. It distinguishes between error propagation analysis for software and hardware

and focuses on several high-level error propagation models that can be adapted to the

mechatronic domain.

Error propagation is closely connected to the system reliability research domain. Relia-

bility evaluation is one of system analysis tasks where the knowledge about error behavior

is the most valuable. Moreover, this research area is the origin of the error propaga-

tion analysis. Existing reliability models often underlay error propagation models and

vice versa; an error propagation analysis is used for more accurate reliability assessment.

Therefore, core principles of reliability evaluation have been borrowed by the error propa-

gation analysis. Due to this fact, existing approaches to system reliability evaluation are

also discussed in this chapter.

2.1. System Reliability

System reliability is considered to be the ability of a system, or an element of the system,

to perform required functions for a specified period of time. It is often reported in terms

of probability. The most common reliability measures are listed in the following passage.

Failure rate is the probability of system failure per unit of time.

Mean time to failure (MTTF) is an estimate of the average time until the first failure

of a system.

Mean time between failures (MTBF) is an average time between two successive system

failures.

Reliability is a key property of safety-critical mechatronic systems, most of which consist

of a mix of software and hardware elements. Reliability of hardware parts can be well

estimated with the help of numerous methods and techniques of classical reliability. A

lot of metrics for reliability analysis of single components exist, as well as models for

reliability assessment of entire systems. In most cases, failure rates for existing hardware

components are known and defined in specifications. Reliability of an entire hardware

system can be estimated using this information and system level reliability models. A

good survey of the hardware reliability models is given in [EFS+08].

The situation with the software reliability evaluation is more complicated. The history

of reliability evaluation goes from hardware to software. By this reason, the first concepts

of software reliability engineering were adapted from the older techniques of the hardware

5

2. State of The Art

reliability. However, the application of hardware methods to software has to be done

with care, since there are fundamental di↵erences in the nature of hardware and software

faults. Weak reliability of hardware usually occurs at the beginning of utilization - the

reason being burn-in, and than after a period of time, hardware wear-out. The software

reliability usually depends on a number of unfixed bugs and design drawbacks. It increases

during the testing/debugging phase and after bug fixes at the operational phase of the

software development life cycle. Because of this distinction, well-established hardware

dependability concepts might perform very di↵erently (usually not well) for software. It

was proposed in [EFR+08] that ”hardware-motivated measures such as MTTF, MTBF

should not be used for software without justification”.

For the last 20 years, the software reliability engineering has been a separate domain.

H. Pham gives the following classification of existing software reliability models [Pha10]:

error seeding models, failure rate models, curve fitting models, reliability growth models,

time-series models, and non-homogeneous Poisson process models. These models are

based on the software metrics like the number of lines of codes, the number of operators

and operands, cyclomatic complexity, a group of object-oriented metrics and many others

(see [XSZC00, RR96] for further information about the software metrics). The majority

of them are black box models that consider the software as an indivisible entity. There

are several open repositories with software failure data that can be used for calibration

of these models. The most well-known and available are PROMISE Data Repository

[GTT07] and NASA IV&V Facility Metrics Data Program repository [Fac04].

A separate domain of the reliability models consists of architecture-based software re-

liability models [GPT01, GWHT04] that consider software as a system of components

with given failure rates or fault activation probabilities (those can be evaluated using

the black box models). Reliability of an entire system is evaluated by processing in-

formation about system architecture, failure behavior, and internal properties of system

components. Most of these models are based on probabilistic mathematical frameworks

like Markov chains, stochastic Petri nets, stochastic process algebra, and/or probabilistic

queuing networks. In addition to reliability evaluation, these architecture-based models

help to identify unreliable parts of the system. These models are abstract enough to cope

with the heterogeneity of components of mechatronic systems. Therefore, several ideas of

architecture-based reliability models are used in this thesis.

2.2. Classical Error Propagation Analysis

This section provides a survey of classical approaches to error propagation analysis. The

majority of them have grown from former reliability models. Therefore, similar to the

reliability domain, the classical approaches to error propagation analysis for hardware and

software systems have fundamental di↵erences.

6

2.2. Classical Error Propagation Analysis

2.2.1. Hardware Error Propagation Analysis

Typically, error propagation analysis of hardware is based on one of the classical reliability

evaluation techniques: failure modes and e↵ect analyses (FMEA), hazard and operability

studies (HAZOP), fault trees analysis (FTA), event trees (ET) etc.

From the system engineering perspective, the most well-known approach to analysis

of error propagation is the safety engineering technique - FMEA. It is a manual process

of identifying failure modes of a system, starting with an analysis of single component

failures. Generally, this process of failure analysis consists of several activities: identifying

failures of individual components, modeling the failure logic of the entire system, analyzing

the e↵ect of a failure on other components, and determining and engineering the migration

of potential hazards.

As a rule in the safety domain, developers model and analyze potential failure behav-

ior of a system as a whole. With the emergence of component-based development ap-

proaches, investigations began exploring component oriented safety analysis techniques,

mainly focusing on creating encapsulated error propagation models. These failure prop-

agation models describe how failure modes of incoming messages, together with internal

component faults, propagate to failure mode of outgoing messages. According to the

[GPM09], failure propagation transformation notation (FPTN) [FMD93] was the first ap-

proach to promote the use of failure propagation models. Other relevant techniques are

hierarchically performed hazard origin and propagation studies (HiP-HOPS) [PMSH01]

and component fault trees (CFT) [KLM03]. A limitation of these safety analysis tech-

niques is their inability to handle cycles in the control flow architecture of the system;

cycles of course appear in most realistic systems. Another approach, fault propagation

and transformation calculus (FPTC) [Wal05], is one of the first techniques that could

automatically carry out failure analysis on systems with cycles.

The FMEA and the FPTN provide means for manual or non-compositional analysis

that is expensive, especially in a typical component-based development process, because

the failure analysis has to be carried out again in the case of changes in the components.

The FPTC does not provide facilities for quantitative analysis, particularly in terms of

determining the probability of specific failure behavior. These disadvantages exclude the

possibility of using the listed models for the error propagation analysis of mechatronic

systems.

2.2.2. Software Error Propagation Analysis

In the software engineering domain, the majority of classical error propagation approaches

are based on fault injection or error injection techniques, conjugated with further statisti-

cal evaluation. One of the classical papers about software error propagation was published

by J.M. Voas [Voa92]. It presents a dynamic technique for statistical estimation of three

characteristics that a↵ect computational behavior of a program: (i) the probability that a

particular section of a program is executed, (ii) the probability that the particular section

a↵ects the data state, and (iii) the probability that a data state produced by the section

7

2. State of The Art

has an e↵ect on program output. The author claims that these characteristics can be

used to predict whether faults are likely to be uncovered by software testing. Another

well-known approach to error propagation analysis is based on propagation, injection,

and execution (PIE) technique [JL90]. It is an extension of the previous work of the

same author. One more paper of J.M. Voas [Voa97] introduces an interface propagation

analysis (IPA). The IPA is also a fault injection technique based on so-called ’garbage’ in-

jection into interfaces between system components and an observation how this ’garbage’

propagates through the system.

An empirical study about propagation of data-state errors was presented in [MJ96].

Results of this study have been also obtained by specific fault injection. Candea et al.

present a technique for automatically capturing dynamic fault propagation information

in [CDCF03]. The authors use instrumented middleware to discover potential failure

points in the application. Their technique builds a failure propagation graph among

components of the system, using controlled fault injection and observation of the fault

propagation. Khoshgoftaar et al. in [KAT+99] describe identification of software modules,

which do not propagate errors, induced by a suite of test cases. The attention of this

paper is focused on propagation of data state errors from a location in the source code

to the outputs or observable data state during random testing with inputs drawn from

an operational distribution. The authors present empirical evidence that static software

product metrics can be useful for identifying software modules, where the e↵ects of a fault

are not observable.

A number of papers depict the influence of software error propagation phenomena on

system reliability. Sanyal et al. in [SSB97] describes Bayesian reliability prediction of error

propagation probability in component based systems. The authors use event control flow

graphs to compute event failure probabilities among system components. They study the

impact of component failure rate on error propagation in these systems. The underlying

idea is to consider event probabilities, event dependencies, and fault propagation in order

to compute the probabilities of occurrence of every event in the system. Finally, Zhang

et al. in [ZFJ09] introduce an extension of a classical reliability model, presented by R.

Cheung in [Che80], by considering error propagation phenomena. However, this paper

contains only doubtful theoretical discussion without any numerical evaluation.

2.3. Error Propagation Models

This section discusses four candidate error propagation models, presented in the last ten

years. These models were originally developed for the software engineering domain. How-

ever, all of them have a strong theoretical foundation and operate with abstractive entities.

This makes them the best candidates for error propagation analysis of the heterogeneous

components of mechatronic systems.

8

2.3. Error Propagation Models

2.3.1. Abdelmoez’s Model

Three articles [ANAS02, ANS+04, NRS+02] by a group of researchers from the West

Virginia University (Abdelmoez et al.) talk about the di↵erent aspects of a single software

error propagation model. This model is based on system architecture analysis using UML

[OMG10b] diagrams. Application area, as defined in the papers, is commercial of the shelf

(COTS) software.

The main advantage of this model is its applicability even in the design phase of the

system development. The structure and semantics of the source code are not available at

this phase, but the information about the flow of control and data within system com-

ponents and between the components is presented in the corresponding UML diagrams.

The authors use state and sequence UML diagrams in reference case studies. Abdelmoez’s

model is a probabilistic model like the majority of the existing error propagation models.

The main function of this model is computation of the probabilities of error propagation

from one software component to another.

The authors distinguish between conditional and unconditional error propagation prob-

abilities. The conditional error propagation probability from a component A to a compo-

nent B is defined as ”the probability that an error in A is propagated by B because the

outcome of executing B will be a↵ected by the error in A” [NRS+02]. It is implied that

the error propagates from A to B under the condition that the component A will actually

transmit a message to the component B:

EP (A, B) = Pr([B](x) 6= [B](x0)|x 6= x0)

where [B] is a function of the component B, which captures all the outcomes of the

executing of B (a state of B and outputs of B), A variable x denotes a message instance,

used in the communication between the components A and B, x represents a corrupted

message, and EP (A, B) represents the probability that a fault and an associated error

state in A will be propagated to B. In the case of the architecture of N components,

EP is an N x N matrix, where an element EP (A, B) is the error propagation probability

from the component A to the component B. The value of EP (A, A) always equals to 1,

meaning that an error in the given component will always change its expected outcome.

Also the authors consider the unconditional error propagation probability. It is denoted

by E(A, B) and defined as the probability that an error propagates from A to B, with-

out being conditioned by an actual occurrence of a message from A to B. E(A, B) is

calculated using the transmission probability matrix, denoted by T (A, B). Each element

of T (A, B) indicates the probability of a connector from A to B being activated during

a canonical execution. The purpose of the matrix T is ”to reflect the variance in fre-

quency of activations of di↵erent connectors during a typical execution” [NRS+02]. The

unconditional error propagation is computed as follows:

E(A, B) = EP (A, B) · T (A, B)

The element T (A, B) shows the number of messages between components A and B in

9

2. State of The Art

the given UML model divided by the number of all observed messages in the system. In

other words, T (A, B) represents an estimate of the probability that a message is sent from

A to B. The authors have found analytically that the error propagation probability can

be expressed in terms of the probabilities of the individual A-to-B messages and states,

via the following formula:

E(A ! B) =
1 �

P
x2SB

PB(x)
P

y2SB
PA!B[F�1

x (y)]2

1 �
P

v2VA!B
PA!B[v]2

Where PA!B[F�1
x (y)] - is the probability of transmission of a message (from A to B)

that causes B to transit from a state x to a state y, PB(x) - is the probability of observing

the component B in the state x, and PA!B[v] - is the probability that a message v is sent

from A to B.

A combination of Abdelmoez’s model and a UML-based model for early reliability

assessment for COTS systems, introduced by Singh et al. in [SCC+01, CSC02], has been

presented by Popic et al. in [PDAC05, Pop05]. The goal of Popic’s research is to extend

the Singh’s model by considering error propagation.

Singh’s model can be applicable early on in the software development life-cycle because

of seamless integration with UML diagrams (use-case, sequence, and deployment UML

diagrams are considered in the paper). The model supports reliability prediction in the

system design phase. The authors assume that information about failure rates for compo-

nents and connectors is available. The failures among di↵erent components are considered

to be independent events. Component failures follow the principle of regularity, i.e., a

component is expected to exhibit the same failure rate whenever it is invoked. The fail-

ure probability of a component Ci in a scenario j is represented in Singh’s model as the

following:

⇥ij = Pr(failure of Cij) = 1 � (1 �⇥i)
bpij

Where ⇥i is the probability of failure of the component, and bpij represents the number

of busy periods that the component exhibits in the sequence diagram.

Popic considers the possibility of error propagation between the components and changes

the previous expression to the next one:

⇥ij = Pr(failure of Cij) = 1 � (1 �⇥i)
bpij ·

NY

k=1

(1 � E(k, i)⇥kj)

Where E represents the unconditional error propagation matrix, which was described

in Abdelmoez’s model. The last expression can be transformed into a system of equa-

tion. The solution of this system gives the probabilities of failure for each of the system

components.

10

2.3. Error Propagation Models

2.3.2. Hiller’s Model

Another approach to error propagation analysis was presented by Hiller et al., the group

of researches from the Chalmers University of Technology in Gteburg, Sweden, in [JHS01,

HJS01, HJS05, HJS02]. This approach also concerns the analysis of data errors propaga-

tion in software. The primary application area is modular software for embedded systems.

The authors define the concept of error permeability through software modules, as black-

boxes with multiple inputs and outputs. The error permeability through a module is

the probability of an error in an input permeating to one of the outputs. In contrast to

Abdelmoez’s model, Hiller et al. pay more attention to the process of error propagation

through the modules, but not between the modules. In [HJS01] the permeability and

a set of related measures are applied to find weak parts that are most likely exposed

to propagating errors. Based on the performed error permeability analysis, the authors

describe how to select suitable locations for error detection mechanisms (EDM) and error

recovery mechanisms (ERM).

The permeability of a module is defined in the following manner. For a particular

module M with m inputs and n outputs, error permeability is the conditional probability

of error occurrence in the output, given that there is an error in the input. Thus, for an

input i and an output k of a module M , error permeabilityPM
i,k is defined as follows:

0  PM
i,k = Pr(error in output k | error in input i)  1

This measure indicates how permeable is the pair input i/output k of the software

module M. The error permeability is the basic measure upon which the authors define a

set of related measures. The relative permeability, denoted by PM :

0  PM = (
1

m

1

n
)
X

i

X

k

PM
i,k  1

This expression does not automatically reflect the overall probability that an error

permeates from the input of the module to the output. Rather, it is an abstract measure

that can be used to obtain a relative value across the modules. In order to distinguish

modules with a large number of input and output signals from those with a small number

of input and output signals, the authors removed the weighting factor in the previous

equation, and defined the non-weighted relative permeability ˆPMas follows:

0  ˆPM =
X

i

X

k

PM
i,k  m · n

Using the permeability for each input i/output k pair, the authors construct a perme-

ability graph. Each node in this graph represents a particular module and has a number

of incoming and outgoing arcs. Each arc has a weight associated with it, which represents

the corresponding error permeability value. This graph enables two types of error analy-

sis: (i) determining the paths in the system along which errors will most likely propagate

11

2. State of The Art

to certain output signals (output error tracing), and (ii) determining which output signals

are most likely a↵ected by errors occurring in the input signals (input error tracing).

In order to find the modules that are most likely to be exposed to propagated errors

along the obtained paths with the most probable propagation, the authors define an error

exposure measure of a particular module as a normalized sum of weights of all incoming

paths. The weight for each path is the product of the error permeability values along

the path. The error exposure is the mean of the weights of all incoming arcs of a node.

Analogous to the non-weight relative permeability, the authors define a non-weighted error

exposure measure.

Finally, using these two sets of measures, the authors define two rules for the placing

of EDMs and ERDs. The first rule: The higher the error exposure values of a module,

the higher the probability that it will be subjected to errors propagating through the

system if errors are present. The authors concluded that it may be more e↵ective to place

EDMs in the modules with higher error exposure than in those with lower error exposure.

The second rule: The higher the error permeability values of a module, the higher the

probability of consequent modules being subjected to propagating errors if errors should

pass through the module. Therefore, Hiller at al. suggest that it is cost e↵ective to place

ERDs in the modules with higher error permeability values than in those with lower error

permeability values.

In the other paper [JHS01], the authors present a more specific approach to error prop-

agation analysis. This approach is aimed at the systematic development of software in a

such way, that inter-modular error propagation is reduced by design. The main theoreti-

cal contribution of this research is the definition of several metrics, which quantitatively

characterize inter-modular error propagation.

The authors define the three phase of error propagation process through the software

with error containment modules (ECM): (i) an error occurring in a source module ECMS ,

(ii) an error propagating out of the source module, (iii) and the resulting error in a

target module ECMT . The number of potential propagation media for errors between

ECMSand ECMT is defined and denoted by m. Mj represents jth propagation medium

of m.

The probability of error propagation out of Mj , is defined as P Ik

Mj
, where Ik is the

kthinput of ECMS . After that the authors define the error transmission probability as

the probability of an error occurrence at the output of ECMS to propagate, through Mj

to the input set of ECMT . This metric is denoted by P 1
j :

P 1
j =

Pr(I)

N

NX

k=1

Pr(Mj |Ik)

Where N is a number of inputs of source ECM, and Pr(I) is the probability of an error

occurring in the input set I of the ECM. Once the error has propagated via Mj to input

of ECMT , the probability of an error occurring in the state ECMT is known as error

transparency, denoted by P 2
j . It shows how vulnerable ECMT is to errors propagating

12

2.3. Error Propagation Models

from ECMS . Using these two metrics Jhumka et. al define influence of ECMS to ECMT :

IS,T = 1 �
mY

j=1

(1 � I
Mj

S,T)

Where I
Mj

S,T = P 1
j · P 2

j . In addition to the influence metric, a total separation metric

was defined as:

ECMS ` ECMT = (1 � IS,T)
Y

k

(1 � IS,kIk,T)
Y

l,m

(1 � IS,lIl,mIm,T)

Where k, l, m, . . . represent intermediate ECMs. The separation value gives an estimate of

the level of interaction between ECMs, as all other ECMs are considered. The separation

metric is important, as it helps address the issue of ECMs interacting both directly and

indirectly. In such cases the influence metric is limited, and the separation metric is used.

In conclusion, Hiller et al. pay a lot of attention to numerical evaluation of the in-

troduced concepts. All related computations have been performed using error injection

techniques with the help of the PROPANE software tool, introduced in [HJS05, HJS02].

2.3.3. Mohamed’s Model

The third error propagation model is introduced by Mohamed et al. in [MZ08]. It

describes an approach to error propagation analysis based on identification of so-called

architectural service routes (ASR). A defined application area of this approach is the

reliability analysis of COTS software. An ASR is considered to be a sequence of compo-

nents connected using provided or required interfaces. The authors use UML component

diagrams to obtain ASRs of the system. A distinctive feature of this approach is that

the authors focus on di↵erent error types: not only data corruption, but e.g. silent and

performance errors.

An error of the type F 2 T , which occurs in component x is defined as fx 2 F . The

component y is another system component that exists in one or more ASRs between x

and y. The authors define the probability of the masking of fx as follows:

P (fx) my) =

| x,y|Y

k=1

Lx,y
kX

i=1

Y

fj+12T

i�1Y

j=1

P
ejfi+1

j+1

!
P

ej+1mi

i

The probability of error propagation to y is defined as follows:

P (fx) f 0
y) =

Lx,y
kX

i=1

Y

fj+12T

0
@

Lx,y
k �1Y

j=1

P
ejfi+1

j+1

1
AP

ej+1f
0
y

i

Where x,y is a set of possible ASRs between the components x and y. Lx,y
k - length

of kthASR from x to y. P ef
x = P (ex) fx) - probability that an input error e will cause

13

2. State of The Art

the failure fx in the component x. P em
x = P (ex) mx) - probability that an input error

e will be masked in the component x.

Using the defined probabilities, the authors analyze an error propagation aspect with

respect to its scattering e↵ect, based on failure types and its ability to localize faults.

Also, they determine upper and lower bounds of failure propagation among system com-

ponents and present the relation between system reliability and architectural attributes.

The attention in Mohamed’s model is focused upon: fault localization ability, error mask-

ing upper bound, error propagation lower bound, error masking and shortest ASR rela-

tionship, error masking and a number of ASRs relationships, error propagation and the

shortest ASR relationship, error propagation and a number of ASRs relationship.

Two formulas for system reliability evaluation have been given using this error propaga-

tion model. The first one defines reliability of the system via the error masking probability.

The second formula defines the reliability using the error propagation probability of sys-

tem outputs. The idea of reliability assessment is continued and modified to consider

error type-awareness in [MZ10b]. In [MZ10a], the previous work was extended to propose

a selection framework for incorporating reliability in software architectures.

2.3.4. Cortellessa’s Model

The last model, considered in this chapter, is presented in [CG06, CG07]. Two Italian

researchers introduce a very comprehensive approach to reliability analysis of component-

based systems that takes into account error propagation phenomena. This approach

provides useful support for several engineering tasks: placing of error detection and re-

covery mechanisms, focusing the design e↵ort on critical components of the system, and

devising cost e↵ective testing strategies.

Cortellessa et al. use the classical definition of faults, errors, and failures [LAK92]. The

authors consider reliability of a component-based system as the probability of failure-free

operation that strongly depends on the following factors:

• An internal failure probability of each component - the probability that the compo-

nent will generate an error, caused by some internal fault.

• An error propagation probability of each component - the probability that the com-

ponent will propagate an erroneous input it has received to its output interface.

• A propagation path probability of the component assembly - the probability of error

propagation through each possible error propagation path from a component up to

the system output.

The authors assume that data errors always propagate through the control flow, and a

system operational profile is known and satisfies the Markov property (see Appendix A

14

2.3. Error Propagation Models

for a detailed description of Markov models). The operational profile of the system under

consideration is defined as the matrix P :

P = [p(i, j)], (0  i, j  C + 1)

An entry p(i, j) of this matrix represents the probability that a component i, during

its execution, transfers the control to a component j. C is a number of components.

The first and the last rows of the matrix P correspond to two ”fictitious” components

that represent the entry point and the exit point of the system respectively. The authors

define two attitudinal measures: intf(i) and ep(i).

• intf(i) - ”is the probability that, given a correct input, a failure will occur during

the execution of i, causing the production of an erroneous output” [CG07]. In

other words, it shows the probability of fault activation during the execution of the

component i, which leads to error propagation to the output of this component.

• ep(i) represents an error propagation probability through the component i. It is

the probability that an erroneous input of this component becomes the cause of an

error on the output of this component.

Using the definitions listed above and the ChapmanKolmogorov equation for discrete

time Markov chains (DTMC), the authors come to the following formulas:

err(i) =

1X

k=0

CX

h=0

err(k)(i, h)p(h, C + 1)

Rel = 1 � err(0)

Where Rel is the system reliability. A variable err(i) is the probability that the sys-

tem will complete its execution producing an erroneous output, given that the execution

started at a component i. A variable err(k)(i, j) shows the probability that the execution

will reach a component j after exactly k control transfers and j produces an erroneous

output, given that the execution started at the component i. The next recursive equation

shows how to compute err(i) using the defined intf(i) and ep(i) measures:

err(k)(i, j) = p(k) · intf(j) +

+ep(j) · (1 � intf(j))

CX

h=0

err(k�1)(i, h)p(h, j)

err(0)(i, j) = 0, 8i 6= j

err(0)(i, j) = intf(j), 8i = j

15

2. State of The Art

The first part of the equation, p(k) · intf(j), represents the probability of fault acti-

vation and error propagation on kth step of system execution. The second part shows

the probability of error propagation through the component, under the condition that an

error occurs in the previous step in a component h. The authors also represent the same

equation in a matrix form and use them to perform a sensitive reliability analysis.

To obtain the intf parameters, the authors refer to the surveys of the architecture-

based models [GPT01] and [GWHT04], discussed in Section 2.1. For computation of the

ep parameters the authors refer to Hillers model (see Section 2.3.2).

Another paper [CP07] discusses a path-based approach to error propagation analysis

in the composition of software services. It introduces a model that generates possible

execution paths within a service-oriented architecture (SOA) using a set of scenarios.

These scenarios are obtained from UML collaboration diagrams, message sequence charts,

or UML sequence diagrams. Cortellessa et al. focus on no-crash failures, which means

that such a failure does not provoke the immediate termination of the whole SOA system.

Instead of this, it can propagate to the next service or can be masked.

The introduced model considers a SOA composed by a number elementary services.

The authors define an input domain for each service as a number of disjoint equivalence

classes. Through the composition of the elementary services, the SOA o↵ers external

services (i.e. system functionalities) to the user. After that, a service dependency graph

is defined to describe system behavior. Each node of this graph represents an elementary

service. Each directed edge from a node i to a node j represents the invocation of the

service j from the service i. The defined graph model is used for the probabilistic analysis

of error propagation through possible execution paths.

2.4. Summary

Four error propagation models that can be considered as candidates for the analysis of

mechatronic systems are listed in Section 2.3. The key properties of these models are also

shown and compared in Table 2.1.

Abdelmoez’s model is a design-level model for error propagation analysis of COTS

systems that was also extended for reliability evaluation in [PDAC05]. This model uses

information about system states and messages in order to compute the probability of error

propagation between system components. The advantage of this model is the possibility

of its application in the early phases of system development. However, it requires a very

detailed and specific UML description that should also be very accurate for obtaining

trustworthy results.

Based on this concept, Hiller et al. introduce the concept of error permeability through

software modules and an error propagation model. This model is defined for modular

software of embedded systems and can be used for dependable system design. Hiller’s

model seams more suitable for real-world application than Abdelmoez’s model because

it operates at the source-code level. The detailed case studies and the software tool

PROPANE have proven this fact. However, the discussed concept can only be applied

16

2.4. Summary

to the software part of a mechatronic system because the theoretical background of this

model is not comprehensive enough.

Mohamed et al. present another approach to error propagation analysis and its appli-

cation for system reliability assessment, based on the definition of the architecture service

routes. In spite of several deviations, Mohammed’s model can be considered an o↵shoot

of Cortellessa’s model. Cortellessa’s model is based on the Markov representation of sys-

tem control flow. It was originally developed for COTS systems and later extended for

SOA systems. This model has the strongest mathematical background in comparison to

the other error propagation models that have been discussed in this chapter. The au-

thors demonstrate its applicability for smart placing of error detection and error recovery

mechanisms, planning of cost-e↵ective testing strategies, and system reliability evalua-

tion. Therefore, after the literature overview, the general idea of Cortellessa’s model has

been selected as the starting point of this thesis.

17

2. State of The Art

Table 2.1.: The comparison table of the suitable models for the error propagation analysis

of mechatronic systems.

Author and years Abdelmoez et al., 2002/2004/2005

Application areas Commercial of the shelf.

Required data State and sequence UML diagrams.

Main idea An early estimate of the error propagation probabilities be-

tween system components in terms of states and messages.

Purpose General use and reliability assessment.

Deficiencies Not abstract enough. Requires very specific and detailed sys-

tem models.

Author and years Hiller et al., 2001/2005/2007

Application areas Modular software for embedded systems.

Required data Source code and reliability measurements.

Main idea The concept of error permeability through a system module.

Purpose Placement of EDM and ERM. Reduction of error propagation

by design.

Deficiencies More oriented to module level rather than system level analysis.

Applicable only for a software part of the system.

Author and years Mohamed et al., 2008/2010

Application areas Commercial of the shelf.

Required data Component UML diagrams, estimated fault activation and er-

ror propagation probabilities.

Main idea Error propagation through an architectural service route.

Purpose Reliability assessment.

Deficiencies Not comprehensive enough. Can be considered an o↵shoot of

Cortellessas model.

Author and years Cortellessa et al., 2006/2007

Application areas Commercial of the shelf and service-oriented architecture.

Required data Fault activation, error propagation, and control flow transition

probabilities.

Main idea Probabilistic error propagation analysis using Markovian rep-

resentation of control flow.

Purpose Placement of EDM and ERM. Identification of critical compo-

nents. Development of cost-e↵ective testing strategies.

Deficiencies Does not distinguish between control and data flows.

18

