
Steffen Kunze

On the Design and Implementation of MultiMode Channel
Decoders

On the Design and Implementation
of MultiMode Channel Decoders

Steffen Kunze

Beiträge aus der Informationstechnik

Dresden 2013

Mobile Nachrichtenübertragung
Nr. 62

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Bibliographic Information published by the Deutsche Bibliothek
The Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibiograpic data is available in the internet at
http://dnb.ddb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2013

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„On the Design and Implementation of MultiMode Channel Decoders“ von
Steffen Kunze überein.

© Jörg Vogt Verlag 2013
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 9783938860663

Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49(0)35131403921
Telefax: +49(0)35131403918
email: info@vogtverlag.de
Internet : www.vogtverlag.de

TECHNISCHE UNIVERSITÄT DRESDEN

ON THE DESIGN AND IMPLEMENTATION

OF MULTI-MODE CHANNEL DECODERS

Steffen Kunze

der Fakultät Elekrotechnik und Informationstechnik

der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. Eduard Jorswieck, TU Dresden
Gutachter: Prof. Dr.-Ing. Dr. h.c. Gerhard Fettweis, TU Dresden

Prof. Luca Fanucci, Uni Pisa
Tag der Einreichung: 06.05.2013
Tag der Verteidigung: 20.08.2013

Acknowledgements

I would like to express my sincerest gratitude to Prof. Fettweis for super-

vising this thesis and to my colleagues at the chair, especially the current

and former members of Dr. Matus’ group, for providing a brilliant working

environment.

Abstract

In modern mobile communications systems the designer has the task of balancing user require-

ments of high data throughputs with the cost concerns of low power consumption and imple-

mentation costs. One important aspect of such systems is the forward error correction (FEC)

coding employed to ensure reliable communication. In the receiver side of a mobile commu-

nications system-on-a-chip (SoC) the FEC decoding contributes a significant part of design

complexity. Unfortunately, there exist a multitude of FEC schemes which are deployed in to-

day’s communication standards to deal with different application scenarios and these schemes

often are implemented in separate IP blocks in a SoC. In accordance with the above mentioned

goals of low power and slim implementation it is attractive to try and combine the decoding

functionality for several FEC schemes into one IP block.

This work presents a framework of methods and rules that can be applied to execute such a

merging of several decoding schemes. One part of this is analyzing target algorithms in their

two main aspects communication and processing and the other applying findings from this anal-

ysis on different hierarchical levels to determine the applicable methods of decoder merging.

Furthermore, the proposed concepts are put into practice through the design of a multi-mode

FEC decoder capable of decoding convolutional, turbo and LDPC codes to demonstrate appli-

cation of the merging methods in different design steps to reach the final decoder realization.

At a post-synthesis area of 0.77 mm2 the decoder reaches throughputs of 23.1 to 86.4 Mbps at a

200 MHz clock frequency, showing that it is on par with published works and therefore proving

that the presented method can be used to produce state-of-the-art results. The decoder has also

been implemented in silicon using a 65nm TSMC process, providing useful measurements to

verify simulation results.

Another main topic of this work is the assessment of merging efficiency, a point that has been

neglected so far in literature. To this end, single-mode decoders specialized on decoding just

one type of codes - either Viterbi, Turbo or LDPC - are derived from the multi-mode architec-

ture. Comparisons between multi-mode and single-mode decoders indicate that the former has

vi

a smaller overall area but suffers from an increase in dissipated power.

Contents

List of Figures x

List of Tables xii

Nomenclature xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Organization of the thesis . 2

2 Channel decoding and it’s implementation aspects 4

2.1 Channel coding basics . 4

2.1.1 Block codes and convolutional codes 5

2.1.2 Challenges in channel decoding . 6

2.2 Convolutional Decoding - the Viterbi algorithm 7

2.3 Turbo decoding - the BCJR algorithm . 9

2.4 LDPC decoding - the Min-Sum algorithm . 11

3 Merging Decoding Schemes 14

3.1 Quantifying merging of functions . 15

3.2 Methods for the merging of algorithms . 16

3.2.1 Core level merging: Memory sharing 16

3.2.2 Functional unit level merging: Interface sharing 17

3.2.3 Algorithmic operation merging: Logic sharing 18

3.3 Analyzing algorithms for merging . 21

3.3.1 Communication . 21

3.3.2 Processing . 22

3.4 Merging and Programmability . 23

viii Contents

3.5 State-of-the-art decoder merging examples . 25

4 Case study: multi-mode FEC decoder 29

4.1 General architecture concept . 29

4.2 Architecture realization . 33

4.3 Merging communication . 35

4.3.1 Memory organization and sharing . 35

4.3.2 Interconnect network . 35

4.3.3 Address generation . 38

4.3.4 Trellis interconnect . 38

4.4 Processing element . 39

4.4.1 PE in Viterbi mode . 40

4.4.2 PE in Turbo mode . 41

4.4.3 PE in LDPC mode . 42

4.4.4 Data path configuration overview . 44

4.5 Application scenarios . 45

4.6 Multicore Aspects . 45

4.7 Implementation results: Area . 48

4.8 Implementation results: Power . 50

4.9 Results in comparison . 51

5 Derived decoder architectures 55

5.1 Viterbi Decoder . 56

5.2 Turbo Decoder . 59

5.3 LDPC Decoder . 61

5.4 Combined Viterbi/Turbo Decoder . 64

6 Evaluation of merging results 67

6.1 Results of merging Viterbi and turbo decoding 67

6.2 Multi-mode combining . 69

6.3 Multi-mode chip implementation . 72

6.4 Discussion of results . 75

7 Conclusion and Outlook 77

7.1 Conclusion . 77

7.2 Outlook . 78

ix

A 80

A.1 Measurements from chip implementation . 80

Bibliography 83

List of Figures

2.1 System model . 4

2.2 Convolutional encoder . 5

2.3 Trellis graph corresponding to the state transitions of the encoder from 2.2 with

the highlighted path representing the input sequence {0, 1, 1, 0, 0, 0}. 8

2.4 Two SISO decoders coupled by (de)interleavers make up a turbo decoder . . . 9

2.5 Tanner graph of an irregular LDPC Code . 12

3.1 Ways to quantify merging of logic blocks. 16

3.2 Cores 1 and 2 sharing memory A. 17

3.3 Functional units with similar interfaces are merged. 19

3.4 Schematic of the max-star operation. 20

3.5 Schematic of the LDPC check node update operation. 20

3.6 Schematic of the merged functional block. 21

3.7 Steps of decoder merging. 24

3.8 Efficiency-programmability tradeoff in decoder implementations. 25

3.9 Area/throughput ratio ν for multimode decoders in turbo and LDPC mode. . . . 27

4.1 General merged decoder architecture with parallelism levels PC , PN and PP

indicated. 31

4.2 Overview of the decoder core. 33

4.3 STA principle: Each FU has its output registered and connected directly to

inputs of other FUs. 34

4.4 Memory mappings for Viterbi, turbo and LDPC decoding. 36

4.5 The interconnect consists of two stages: a crossbar and a barrel shifter. 37

4.6 Three possible interconnect configurations for different scenarios. 37

4.7 Block schematic of the processing element. 39

4.8 SISO unit of a turbo decoder (from [Sun08]). 40

List of Figures xi

4.9 Data path of the PE in Viterbi mode. 41

4.10 Data path of the PE in turbo mode. 42

4.11 Data path of the PE in LDPC mode. 43

4.12 Multiple COREs connected as array. 46

4.13 Example operating modes of multicore decoder. 46

4.14 Diagram showing the relative contributions to logic area of the decoder for the

different parts (not representive of the actual layout). 49

4.15 Ratio of ν to Er for selected decoders. 54

5.1 Data path of the viterbi decoder. 56

5.2 Area and energy efficiency changes going from multi-mode to single-mode

Viterbi decoder. 58

5.3 Data path of the turbo decoder. 59

5.4 Area and energy efficiency changes going from multi-mode to single-mode

Turbo decoder. 61

5.5 Data path of the LDPC decoder. 62

5.6 Area and energy efficiency changes going from multi-mode to single-mode

LDPC decoder. 65

5.7 Data path of the merged decoder for Viterbi and Turbo decoding. 65

6.1 Area comparison of merged, Viterbi and Turbo decoders. 69

6.2 Comparison showing merging results for different parts of the decoders. 72

6.3 Schematic of the Tommy MPSoC. 73

6.4 Energy efficiency of decoder operation modes. 74

6.5 Layout of the Tommy test chip. 75

7.1 Layout of the TOMAHAWK 2 MPSoC. 79

List of Tables

3.1 Overview of flexible FEC decoder architectures 26

4.1 PE configurations for different applications 44

4.2 Application throughputs for a decoder with one CORE and 4 PEs at 200 MHz . 45

4.3 Multi-mode decoder post-synthesis area . 48

4.4 Multi-mode memory setup . 48

4.5 Details of decoder logic area . 49

4.6 Details of data path area . 50

4.7 Details of PE area . 50

4.8 Simulated power for 1.1 V @ 200 MHz . 51

4.9 Decoding efficiency of the three applications 51

4.10 Overview of flexible FEC decoder architectures 52

4.11 Overview of flexible FEC decoder architectures - continued 53

4.12 Area and energy efficiency for LDPC and Turbo decoding modes of state-of-

the-art multi-mode decoders . 54

5.1 Single-mode viterbi decoder area . 57

5.2 Single-mode viterbi decoder PE area . 57

5.3 Comparison of viterbi decoder architectures 58

5.4 Single-mode turbo decoder area . 60

5.5 Single-mode turbo decoder PE area . 60

5.6 Comparison of turbo decoder architectures . 62

5.7 Single-mode LDPC decoder area . 63

5.8 Single-mode LDPC decoder PE area . 63

5.9 Comparison of LDPC decoder architectures 64

5.10 Merged Viterbi and Turbo decoder area . 66

5.11 Merged Viterbi and Turbo decoder PE area 66

xiii

6.1 Results of merging viterbi and turbo decoder 67

6.2 Results of merging viterbi and turbo decoder data path 68

6.3 Merging FUs in Viterbi/Turbo decoder . 68

6.4 Results of merging LDPC and Viterbi/Turbo decoder 69

6.5 Results of merging Viterbi/Turbo and LDPC decoder data path 70

6.6 Merging PEs in Viterbi/Turbo and LDPC decoder 70

6.7 Estimated power consumption (without memories) 71

6.8 Measured power consumption at fmax . 73

6.9 Comparing simulated and measured power consumption 74

A.1 LDPC power . 80

A.2 Turbo power . 80

A.3 Energy efficiency depending on fmax . 80

Nomenclature

ACS Add-compare-select

AGU Adress generation unit

ALU Arithmetic logic unit

ASIC Application-specific integrated circuit

ASIP Application-specific instruction set processor

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit error rate

BM Branch metric

CC Convolutional code

CN Check node

CRC Cyclic redundancy check

CTC Convolutional turbo code

DSP Digital signal processor

DVB-S Digital video broadcast-satellite

FEC Forward error correction

FIFO First in first out

FPGA Field programmable gate array

FU Functional unit

GPP General-purpose processor

LDPC Low-density parity-check code

LLR Log likelihood ratio

LUT Look-Up table

MAP Maximum a-posteriori propability

MIMO Multiple Input Multiple Output

MPSoC Multi-processor system-on-a-chip

NoC Network-on-chip

List of Tables xv

PE Processing element

PLL Phase-locked loop

QC Quasi-cyclic

RISC Reduced instruction set computing

SIMD Single instruction multiple data

SISO Soft input soft output

SM State metric

STA Synchronous transfer architecture

TPMP Two-phase message passing

TSMC Taiwan Semiconductor Manufacturing Company

VA Viterbi algorithm

VLIW Very long instruction word

VLSI Very large scale integration

VN Variable node

αi(Sk) Forward recursion state metric for trellis state Sk in trellis step i

βi(Sk) Backward recursion state metric for trellis state Sk in trellis step i

βO Min-sum normalization offset

γi(Sk,i, Sj,i−1) Branch metric for transition from trellis state Sk in trellis step i to state

Sj in step j

Λ(ui) LLR corresponding to source bit i

λjk(i) Branch metric for transition from trellis state Sj to state Sk in trellis

step i

Λk(i) Path metric of trellis state Sk in trellis step i

C Check nodes in a tanner graph

u Source symbols

V Variable nodes in a tanner graph

v Coded symbols

y Received symbols

z Submatrix size of a QC-LDPC code

ν Area efficiency ratio

B Length of quantized receive symbol

dk(i) Decision bit generated at trellis state Sk in trellis step i

Er Energy efficiency measure in nJ/bit

fclock Clock frequency

G Generator matrix

xvi List of Tables

H Parity-check matrix

K Length of source symbol vector

k Constraint length of a conv. code

ms Memory depth of a conv. encoder

N Length of code symbol vector

nb Number of submatrices in a row of H

nm Number of submatrices in a column of H

Nq Number of quantization bits

Niter Number of decoding iterations

Nsub Number of submatrices in H

O Area overhead ratio

PN Number of processing nodes in a core

PP Internal parallelism of a processing node

R Code rate

Rs Area sharing ratio

S Area savings ratio

Sk Trellis state representing encoder state k

TLDPC Throughput in LDPC decoding mode

TTurbo Throughput in turbo decoding mode

TV iterbi Throughput in Viterbi decoding mode

zjk Expected encoder output for transition from trellis state Sj to state Sk

1 Introduction

1.1 Motivation

Modern communication systems are characterized by the need to transmit large amounts of

data at high data rates. To ensure reliable communication, in most cases it is beneficial to

employ forward error correction (FEC) techniques to avoid costly retransmission and optimize

the efficiency of radio resource usage. Throughout the history of information theory and com-

munications engineering, a large number of different FEC schemes have been developed. Well

known examples are BCH codes, Reed-Solomon codes, convolutional codes (CCs), turbo codes

or the recently more popular low-density parity-check (LDPC) codes.

Unfortunately, none of these coding schemes has been shown to be a catch-all solution to cover

the wide range of communication scenarios that exist. This leaves us in a situation where

modern communication standards use different coding schemes and code parameters from one

standard to another because while one coding scheme might excel in one application case, it

may be inefficient in another. It is even quite common for one communication standard to em-

ploy more than one type of channel coding algorithm in its various specified scenarios, e.g. one

for a control channel and another for a data channel. The IEEE 802.15 and LTE standards for

example both use convolutional turbo codes (CTC) as well as CCs. The IEEE 802.15e ’Wimax

mobile’ standard even has an additional option for LDPC codes.

The system designer who wants to implement the communications system in hardware now has

to accommodate for all the required coding types and parameter sets. The main concern here

is the decoding part of the signal processing chain, since it is far more computationally com-

plex than the encoding. So complex even, that it is often infeasible to implement the decoding

algorithms on standard general-purpose processors or DSPs. Instead, FEC decoders are gener-

ally implemented in hardware as specialised IP blocks. Traditionally, this also meant having a

dedicated IP core for every coding scheme, which of course uses valuable chip resources and

increases system complexity. Recently however, there has been some effort to merge decoder

2 Chapter 1: Introduction

architectures for different algorithms. This type of approach gives the system designer the op-

tion to reduce the number of IP blocks in the System-on-Chip (SoC) and avoid having to spend

chip area for specialised IP that might only be used a small part of the time. Some notable

results have been reported for combining LDPC and CTC decoders in [Nae08], [Gen10] and

[Sun08]. In [All08] LDPC, CTC and CC decoding is combined.

However, all publications on this topic so far are only focused on particular implementations

of the decoder merging problem. As of yet there has been no attempt to analyze it in a more

general way and the published work on the methodology of combining decoding algorithms and

evaluating the results remains sparse. A reason for this is that in general, it is difficult and not

very meaningful to compare architectures that are often implemented on different technologies

with different design goals in mind, making it hard to accurately assess them. In this work we

want to take a more methodological approach to this problem. Merging the hardware imple-

mentations of channel decoders shall be analyzed from a more theoretical point of view as well

as through actual implementation results. The latter shall be achieved by following an approach

that not only gives us a multi-mode FEC core but also some benchmark implementations to

allow a transparent and fair comparison to answer the question whether it is actually efficient to

merge decoders or if it would be advantageous to keep dedicated decoders over a multi-mode

solution.

The basic idea here is to take a fixed set of technology parameters and take a common design

framework to design and implement a decoder capable of processing several different decoding

algorithms with state-of-the-art performance. Using this main decoder as reference point, it is

then possible to design and implement several separate ’benchmark’ decoders that are dedicated

to one of these algorithms each. With this we can collect the data that should prove as a reli-

able source for drawing conclusions on the effects of merging decoders and answering the open

questions we mentioned thus far.

1.2 Organization of the thesis

In chapter 2 an introduction to some basics of forward error correction is given and the de-

coding algorithms which will later become the focus of the hardware implementation are intro-

duced.

Chapter 3 categorizes methods for the analysis of algorithms that should be merged in hard-

ware and details design methods that can be used to execute the merging of architectures. This

is accompanied by an overview of the state-of-the-art in this area.

Chapter 1: Introduction 3

Chapter 4 shows the application of the methods defined in chapter 3 through a realization of

a multi-mode channel decoder. The decoder architecture will be presented together with some

results of the implementation.

Chapter 5 is dedicated to the description of the ’benchmark’ single-mode decoders based on

the architecture from chapter 4 and their implementations.

Chapter 6 discusses the results gained by merging the decoders and gives an evaluation of the

implementation results.

Chapter 7 contains concluding remarks and an outlook into possible future work.

2 Channel decoding and it’s
implementation aspects

This chapter gives a brief introduction to the topic of forward error correction, or channel cod-

ing, as it is also commonly called. Three common channel coding schemes used in modern

communication systems - convolutional codes, turbo codes and low-density parity-check codes

- are explained briefly with an overview of some decoding algorithms as well as pointing out

some challenges that accompany a hardware implementation of these algorithms.

2.1 Channel coding basics

Channel encoder

Information Source

Source
Source

encoder

Information Sink

Sink
Source

decoder

u v
Modulator

Channel decoder

û y
Demodulator

Channel

Transmission

Figure 2.1: System model

In figure 2.1 you can see the general model of the kind of communication system we assume

in our work. Binary source data u is encoded with a channel code of code rate R to improve

the system performance under faulty transmission conditions through the exploitation of added

redundancy. The encoded symbols v are then modulated and transmitted over a noisy channel.

On the receiver side, these steps are reversed. The demodulator transforms the transmitted

Chapter 2: Channel decoding and it’s implementation aspects 5

signal back into a discrete sequence of received symbols y. Based on these symbols, the channel

decoder generates an estimate û of the source data and passes it to the information sink.

2.1.1 Block codes and convolutional codes

Channel codes are separated into two categories based on the way the code sequence is gen-

erated. A code is called a block code, when an information sequence u = (u0, u1, ..., uK) of

length K is transformed into a code sequence v = (v0, v1, ..., vN) of length N by multiplying it

with a matrix G, the so-called generator matrix.

G · u = v (2.1)

Thus, redundancy is added to the original information that makes it possible to detect and/or

correct errors that occurred during transmission. The resulting code rate is given by R = N/K.

Additionally, there exists the parity-check matrix H that can be used to determine, whether a

received sequence is a valid codeword. For this to be true it has to fulfill the equation

H · vT = 0. (2.2)

In the case of the block codes, the whole code sequence can be generated in one step by carrying

out the matrix multiplication.

Convolutional codes (CCs) take a different approach. The input information sequence is pro-

cessed in a serial fashion, symbol by symbol. Figure 2.2 pictures the encoding process.

v1

v2

u

Figure 2.2: Convolutional encoder

The information sequence u is shifted into a set of ms memory elements. The feedforward

connections to the outputs or feedback connections to the memory elements can be represented

6 Chapter 2: Channel decoding and it’s implementation aspects

by a generator polynomial G. In our case, the polynomial corresponding to output v1 would

be G1 = 1 · x−2 + 0 · x−1 + 1 · x, which often gets shortened to (1, 0, 1) respectively the octal

equivalent of just (5). The whole encoder is then described by G = (G1, G2) = (5, 7).

The depth of the encoder memory of a CC is also referred to as constraint length k, which is

defined as k = ms + 1.

The two basic types of channel codes mentioned above are the basis for most coding schemes

that have been developed so far. To increase the code performance, channel codes are often

concatenated in either a serial or parallel fashion.

2.1.2 Challenges in channel decoding

The main challenge of implementing channel decoding algorithms in hardware is to provide

good error correction performance and high data throughput while keeping chip area and power

consumption low. Unfortunately, these goals contradict each other, as high throughput and good

error correction performance are correlated with rising hardware complexity. The system de-

signer now has the challenging task to find a trade-off between acceptable performance loss and

hardware cost to implement the decoding. Three important trade-offs are listed in the following:

Accuracy-complexity-tradeoff: The goal of the decoding step is to find the codeword v that

has the highest probability of being transmitted based on the received vector r. The optimal

result is achieved by performing a maximum-likelihood search over the whole codeword space,

but the high computational complexity required makes this approach impractical for implemen-

tation in hardware. This led to the development of sub-optimal decoding algorithms, that offer

greatly reduced computational complexity at the price of slightly lower communications per-

formance. Still, channel decoding remains as one of the most computationally complex parts of

the receiver signal processing chain in high-throughput communication systems. Some choice

sub-optimal algorithms are going to be discussed in the next sections.

Another aspect of decoding where this performance-complexity trade-off comes into play is the

quantization of the received symbols. Instead of performing a "hard" decision between the bi-

nary values 1 and 0, the receiver can also provide them in a higher-valued representation of Nq

bits. This gives us an additional measure of the reliability of the estimation and can be exploited

to get a better decoding result. Again, this comes with the price of a higher implementation cost,

since now all operations have to be performed on values of Nq bits. Every decoding algorithm

has a point at which the performance gains from increasing Nq become negligible compared

to the additional complexity, which should be taken into account as a constraint for the system

design.

Chapter 2: Channel decoding and it’s implementation aspects 7

Throughput-complexity-tradeoff: To speed up decoding to satisfy the requirements of mod-

ern communications systems, there are two methods we can employ: increasing clock frequency

of the decoder and parallelizing the decoding. The former increases hardware complexity a bit

by added pipeline stages but after a certain point a rise in clock frequency results in a dispro-

portionate rise in power consumption. Parallelization obviously increases the chip area, but has

the potential to be more power-efficient. A challenge is finding algorithms that are fit for high

degrees of parallelization to achieve very high throughput.

Flexibility-complexity-tradeoff: When implementing a channel decoder, the design is usually

limited to a certain set of code parameters and the complexity of the design is directly related to

the size of this parameter set. Supporting only a very small set of parameters allows for a heavily

specialized and very efficient implementation, but adding support for more and more parame-

ters increases complexity. The case analyzed in this thesis can be even more complex, since not

only different code parameters but also different code types are taken into consideration.

These criteria are the major deciding factor when selecting decoding algorithms for hardware

implementation. The following sections briefly explain suboptimal decoding algorithms for

three channel coding types that are widely used in the area of mobile communications and take

a look at some specific implementation aspects for each of them.

2.2 Convolutional Decoding - the Viterbi algorithm

The Viterbi algorithm (VA) [Vit67] is a well-known algorithm to non-iteratively decode CCs.

It accumulates metrics along paths in the trellis diagram based on the received symbols and

selects the path with the best metric, representing the most likely code word.

The VA is traditionally divided into three parts: branch metric computation (BMC), state met-

ric computation (SMC), and traceback (TB). In the BMC, for every trellis step i the distance

λjk(i) = |y(i) − zjk|2 between received input symbols y(i) = (y0, y1, ..., yb) and expected val-

ues zjk is calculated, where zjk is the expected encoder output for a transition from trellis states

Sj to Sk. This distance can be calculated as sum of the distances λjk,b for each of the individual

symbol elements yb. These are quantized as unsigned integer soft values ranging from zero to

a maximum integer value ymax, so λjk,b is essentially the distance of yb to either zero or ymax,

which is equivalent to either the input value itself or its bitwise negations, depending on zjk.

8 Chapter 2: Channel decoding and it’s implementation aspects

S
0

S
3

S
2

S
1

0/00

1/01

i = 0 i = 6i = 3i = 2i = 1 i = 4 i = 5

0/00 0/00 0/00 0/00 0/00

1/01

Figure 2.3: Trellis graph corresponding to the state transitions of the encoder from 2.2 with the

highlighted path representing the input sequence {0, 1, 1, 0, 0, 0}.

The accumulated sum for one input symbol becomes:

λjk(i) =
B∑

b=1

λb with λb =

yb(i) if zjk,b = 0

ȳb(i) if zjk,b = 1

(2.3)

where B is the number of elements in an input vector (i.e. B = 2 for a rate-1/2 code) and ȳb is

the bitwise negation of yb.

The resulting metrics λjk(i) are used in the SMC to update and select the new path metrics in a

recursive Add-Compare-Select (ACS) operation:

Λk(i) = min
j

(Λj(i − 1) + λjk(i)). (2.4)

This selection equates to taking a decision on whether a 0 or 1 was likely encoded in step i.

These ’decision bits’ dk(i) from the SMC are later used to trace back the maximum-likelihood

path and form the decoded codeword after all state transitions along the trellis have been calcu-

lated.

Implementation concerns

To implement a given algorithm in hardware always means looking for solutions to the already

mentioned tradeoffs between performance and costs. Let us look at some interesting aspects

Chapter 2: Channel decoding and it’s implementation aspects 9

of the VA in regard to these constraints. To speed up the decoding process, the most important

tool is algorithm parallelization, which can happen on various hierarchical levels. Bit-level op-

timizations to VA implementations were presented in [Fet91]. Another low-level parallelization

option for trellis-based codes in general is the folding of several trellis steps into one [Fet89].

To combine two steps, the ACS has to be performed over 4 path metrics in one clock cycle,

which is also called a radix-4 ACS in [Bla92]. On the algorithmic level, a very straightforward

method is to process state metric computations for several trellis states in parallel. Because

often codes with a high number of trellis states (e.g. 64) are used, this is already a powerful

tool and makes it fairly easy to reach high throughputs of several hundreds of Megabits per sec-

ond (Mbps). To achieve even higher performance, the so-called windowing technique is used

[Bla96]. The codeword is split into several windows, which are again processed in parallel.

Since windows other than the first start the processing in an unknown state, they have to be

initialised first, which introduces additional computations. Due to its non-iterative nature, the

VA is the least computationally complex and data-transfer intensive algorithm out of the ones

shown here and since it has been used for about 50 years now its implementation has been

studied very extensively.

2.3 Turbo decoding - the BCJR algorithm

SISO

decoder

ys

yp

I
-1

SISO

decoder

I

yp

�e

�a

�a

�e

Figure 2.4: Two SISO decoders coupled by (de)interleavers make up a turbo decoder

Convolutional turbo codes (CTCs) are a class of parallely concatenated CCs. The most common

type, which we will be discussing, consists of two systematic rate-1
2

CCs with an interleaver

inbetween the encoders and one of the systematic encoder outputs punctured [Ber93]. Turbo

10 Chapter 2: Channel decoding and it’s implementation aspects

decoding is performed iteratively in a loop between two component decoders which use the

BCJR algorithm [BCJR74] to decode the individual CCs and exchange the generated reliability

info (see fig. 2.4). In contrast to the VA, the BCJR algorithm decodes CCs with the goal of

creating soft outputs that include information about bit reliability. Therefore, state metrics are

calculated not only in a forward recursion similar to the VA but also in a backwards recursion.

The result of the two is combined into the a posteriori probability Λ(ui) for an information bit

ui. Forward and backward recursions are defined as follows:

αi(Sk) =
∗

max
j

(αi−1(Sk) + γi(Sk,i, Sj,i−1)) (2.5)

βi(Sk) =
∗

max
j

(αi+1(Sk) + γi(Sk,i, Sj,i+1)) (2.6)

where γ are the branch metrics and

∗
max(a, b) = max(a, b) − ln (1 + e−|a−b|). (2.7)

The max-star operator can be approximated by max() with a small loss of precision. This is

then known as the max-log-MAP algorithm [Rob97].

After calculating the state metrics, forward and backward metrics are then combined to generate

the LLR for this bit:

Λ(ui) =
∗

max
ui=1

(αi−1 + γi + βi) − ∗
max
ui=0

(αi−1 + γi + βi) (2.8)

With these LLRs the extrinsic information to be exchanged between the component decoders is

extracted:

Λe(u) = Λ(u) − (Λa(u) + Λ(rs) + Λ(rp)) (2.9)

One turbo decoding iteration is made up of two such symbol-by-symbol maximum-a-posteriori

(MAP) decoding processes, one for each component CC. They are also called sub-iterations.

Implementation concerns

The fact that we have to process a forward and a backward recursion and afterwards perform a

LLR combination step in each of two sub-iterations per turbo iteration makes turbo decoding a

very computationally complex task. Generally we can apply the same parallelization techniques

as with the VA, but parallelizing BCJR takes more effort, since the component codes usually

have only 8 or 16 trellis states. Besides parallel state metric computation, forward and back-

ward recursion can be executed in parallel to speed up decoding. This basic scheme is referred

Chapter 2: Channel decoding and it’s implementation aspects 11

to as ’sliding window’ decoding [Ben96]. Due to the iterative nature of this algorithm this is

still not enough to reach high throughputs, so extensive windowing is required. However, this

can conflict with the interleaving that has to be performed inbetween subiterations. Window-

ing in this case means that a codeword is divided into P blocks that are decoded on P MAP

decoders in parallel. As mentioned earlier, some initialization is needed for these blocks and

there are different approaches to this problem such as next iteration initialization or the XMAP

[Daw93][Wor00].

Another potentially complex part of a turbo decoder is the interleaver between the two subiter-

ations that is used to reduce dependencies between the encoded data streams. Parallel memory

accesses mapped to the same memory bank by the interleaver can cause conflicts and make it

necessary to use algorithms that are contention-free up to a certain level of parallelism. If the

necessary addresses cannot be generated on-the-fly at runtime, they need to be precomputed

and stored in memories, which can become quite large for long codewords. This means it is

desirable to use algorithms that are both contention-free and easy to process. Polynomial-based

algorithms with such properties have been proposed in [Tak06] and [Ber04].

An important method to avoid redundant computation is to exactly control the number of exe-

cuted turbo iterations. The number of iterations necessary before the decoded codeword con-

verges depends on channel conditions and also differs from codeword to codeword, so perform-

ing a cyclic redundancy check (CRC) to test for successful decoding after each (sub-)iteration

can prevent execution of redundant iteration cycles where the result is not improved any more

[Shi99].

2.4 LDPC decoding - the Min-Sum algorithm

LDPC codes are block codes with typically very sparse parity-check matrices that offer sim-

ilar error correction capabilities as turbo codes. A common practical suboptimal approach to

decode LDPC codes is the offset min-sum approximation [Che05] of Gallager’s optimal Belief

Propagation algorithm [Gal63] which operates on a graphical representation of LDPC codes,

the Tanner graph [Tan81]. The graph is an elegant alternate way of visualizing the parity-check

matrix: M Check nodes (CNs) represent the rows (or parity-check equations), N variable nodes

(VNs) represent the columns (or code bits) and edges between nodes represent the 1-entries of

the matrix.

For Min-Sum decoding, the reliability information from the recieved channel values (repre-

12 Chapter 2: Channel decoding and it’s implementation aspects

Figure 2.5: Tanner graph of an irregular LDPC Code

sented as log-likelihood ratio (LLR)) is propagated iteratively between the nodes and checked

against the parity equations. This works in four basic steps:

1) Initialization: Graph edges are initialized to the received channel values y.

2) CN update: The CNs perform a parity check over the connected VNs V and propagate the

result together with the corresponding LLRs back to the VNs (excluding intrinsic information

from the respective nodes). The update from a CN Cm to a VN Vn can be expressed as:

Lmn =

 ∏

n′∈Vm\n

sign(Ln′m)

 · max(min

n′∈Vm\n

|Ln′m| − βO, 0). (2.10)

βO serves as normalization offset to prevent performance degradation, the max function around

the min-term and 0 simply indicates βO shall not be used on values smaller than itself.

3) VN update: The VNs collect the LLRs from the connected CNs C and updates them with

the new values (again, minus intrinsic information):

L(nm) = yn +
∑

m′∈Cn\m

L(rm′n) (2.11)

4) Decision: Steps 2 and 3 are repeated iteratively until a stopping criterion is reached. Now the

soft outputs of step 3 (this time including intrinsic information) are subjected to hard decision.

In the original two-phase message passing (TPMP) schedule first all check node updates are

calculated and afterwards all variable node updates. It has been shown that convergence can be

sped up by instead updating all variable nodes connected to a certain check node directly after

that node’s update [Man03]. This technique is usually called Layered Decoding.

In general it can be said that the min-sum algorithm is less computationally complex than BCJR,

but more iterations are needed to achieve an acceptable communications performance.

Chapter 2: Channel decoding and it’s implementation aspects 13

Implementation concerns

LDPC decoding can be parallelized to a very high degree. The belief propagation algorithm

allows processing of all check node updates or variable node updates for a complete code word

in parallel, meaning we could perform one such half-iteration in just one clock cycle. Unfor-

tunately this requires a very sophisticated communication network, that can route all messages

to the respective target nodes at once. Since every LDPC code has a different connectivity,

such a design would be limited to one unique application. In most practical cases, however, it

is necessary to support multiple block sizes and code rates, making a fully connected decoder

prohibitively complex. We are forced to sacrifice throughput for flexibility, but it should be

kept in mind that for specialised high-throughput applications the possibility of fully parallel

decoding exists for LDPC codes.

Since this approach is not relevant for most designs, partially parallel methods are preferred in

combination with specially designed structured codes such as quasi-cyclic (QC) codes [Foss00].

The parity-check matrix of these codes can be divided into nb × nm submatrices of size z × z.

These submatrices are either all-zero or permutations of the identity matrix, which means it is

not hard to design an interconnect for these very regular structures that can be configured to

accommodate a wider selection of different parity-check matrices to enable usage of various

block sizes and code rates. The parallelism level of decoding QC-LDPC codes is not limited,

to z though. It is possible to process several submatrix rows in parallel, but if they are not inde-

pendent we suffer a loss in decoding performance as we ’dilute’ the layered decoding schedule

and move in the direction of TPMP where all submatrix rows would be processed in parallel,

regardless of dependencies. This tradeoff can be worked around somewhat by trying to opti-

mize the processing order of submatrices ([Che04]).

Similar to turbo decoding, LDPC decoders profit from the application of early stopping criteria

to limit the number of iterations to a minimum [Kie05].

3 Merging Decoding Schemes

In the last chapter we had a look at three algorithms that are commonly used to implement

channel decoding. The typical approach to a decoder implementation that is to be used in a

communications SoC is to select one algorithm and design an optimized IP block for that algo-

rithm. If the system specification contains more than one channel coding scheme, a dedicated

decoder is used for each of them. Now the immediately obvious question arises: Can’t we

combine these decoders somehow to simplify the system and save chip area and/or power?

Some research has been done on this topic in recent years with notable results such as [All08],

[Sun08], [Nae08], [Gen10]. In the following sections, we will take a look at combining the

functionality of several IP cores in a more general way.

We want to analyze the merging of the hardware implementation of two (or more) algorithms,

say we have an algorithm a that is mapped on a hardware block A and an algorithm b mapped on

a block B. We now want to create a hardware block C, that enables the processing of a as well

as b, with the side constraints of minimizing area and power consumption of C and maximizing

the algorithm performance of a and b. We will make the following assumptions throughout this

chapter: We focus here on algorithms of a certain minimum complexity which would usually

be implemented as stand-alone IP block or coprocessor within an MPSoC environment. We

further assume that the algorithm implementation can be represented by a basic architectural

model, that is on its highest level made up of memory blocks for value storage and logic cores

for data processing. Such a core should contain all functionality for one algorithm and consist

of lower-level functional units internally.

To solve this problem, there are two things we need: (1) We need to analyze the target algo-

rithms and identify the potential for merging and (2) we need merging methods we can apply

to the target algorithms to exploit the potential identified in the analysis. In this chapter, we

are going to present merging methods categorized into different hierarchical levels: core level,

functional unit (FU) level, intra-FU level and we are also going to present approaches for an-

alyzing algorithms. But before we start to discuss ways to merge logic blocks, we will first

take a moment to see how we can measure the result of such a merging process in regards to its

