
Andreas Bartho

Creating and Maintaining Consistent Documents with
Elucidative Development

Creating and Maintaining Consistent Documents with
Elucidative Development

Andreas Bartho

Beiträge aus der Informatik

Dresden 2014

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Bibliographic Information published by the Deutsche Bibliothek
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibiograpic data is available in the internet at http://dnb.ddb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2014

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„Creating and Maintaining Consistent Documents with Elucidative Development“
von Andreas Bartho überein.

© Jörg Vogt Verlag 2014
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 9783938860762

Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49(0)35131403921
Telefax: +49(0)35131403918
email: info@vogtverlag.de
Internet : www.vogtverlag.de

Creating and Maintaining
Consistent Documents with
Elucidative Development

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Andreas Bartho
geboren am 07.12.1980 in Dresden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann (Technische Universität Dresden)

Associate Professor Kurt Nørmark (Aalborg University)

Tag der Verteidigung: 27.05.2014

Dresden im August 2014

vi

vii

Abstract

Software systems are usually not defined in one big, all-encompassing model,
but they consist of a multitude of different views from multiple technological
spaces, such as requirements, class diagrams, or source code. These views
contain redundancy, i.e., they share some of their information. If redundant
information in different views contradicts with each other, the views become
inconsistent. Inconsistency is a source of errors, and much effort is spent on
research and tool development to avoid it.

Documents are also views on a software system. They are usually written
by human authors. In practise, documents and other views often change
at different paces. Document updates are frequently omitted because they
are expensive and do not pay off immediately. Consequently, documents are
often outdated. Outdated documents communicate wrong information about
the software. The severity of outdated information can range from a minor
inconvenience for the reader to complete uselessness.

Sometimes documents are generated. If generated documents are out-
dated, they can easily be regenerated. However, in many cases it is not
possible to generate the desired document content.

In this thesis, we introduce Elucidative Development (ED), an approach
to create documents from other views by partial generation. Partial gener-
ation means, that some document content is generated, and the remaining
document content is added manually, afterwards. Unlike naive generation
approaches, ED retains manually written content when the generated con-
tent is regenerated. A guidance system informs the author about changes in
the generated content and helps him update the manually written content.

In an evaluation we present our findings regarding the applicability and
versatility of ED. First, we analyse two model specifications, one of them
being the Unified Modeling Language (UML) specification, for inconsistencies
and show that the use of ED would have prevented these inconsistencies. We
also show how ED helps with the update of the specifications. Then, we
present several examples where we successfully wrote documents using ED.

viii

ix

Acknowledgement

During the writing of this thesis, I was supported by many people, who
deserve my gratitude. First of all, I would like to thank my former colleagues
at the university, who supported me with new ideas, collaborations, joint
publications and suggestions for case studies, especially Birgit Demuth, Sven
Karol, Claas Wilke, Julia Schroeter and Katja Siegemund. I am particularly
grateful for the support of Sebastian Richly, whose valuable criticism and
recommendations had a great impact on this thesis. I would also like to
thank my former assistants Frank Herrlich and Sebastian Patschorke. Their
excellent theoretical and practical work on the DEFT prototype provided
valuable inspirations for the thesis.

Another big thank you goes to my friends, who proofread the thesis and
helped me improve it, in particular René Pönitz, Frank Herrlich and, most
importantly, my dear girlfriend Claudia Geitner.

Finally, I would like to thank Prof. Dr. Uwe Aßmann for the possibility to
join his group, take part in a research project that met my personal interest
and turn it into a PhD thesis. Prof. Dr. Aßmann’s visionary ideas and his
extensive knowledge of the work of fellow researchers helped me to broaden
my thinking, see new connections, and relate them to my own work.

x

Contents xi

Contents

List of Figures xv

List of Tables xvii

List of Listings xix

Acronyms xxi

1 Introduction 1
1.1 Contributions . 2
1.2 Scope of the Thesis . 3
1.3 Organisation . 3

2 Problem Analysis and Solution Outline 5
2.1 Redundancy and Inconsistency 5
2.2 Improving Consistency with Partial Generation 8
2.3 Conclusion . 11

3 Background 13
3.1 Grammar-Based Modularisation 13
3.2 Model-Driven Software Development 14
3.3 Round-Trip Engineering . 15
3.4 Conclusion . 17

4 Elucidative Development 19
4.1 General Idea and Running Example 19
4.2 Requirements of Elucidative Development 21
4.3 Structure and Basic Concepts of Elucidative Documents . . . 23

4.3.1 Artefact . 26
4.3.2 Active Reference . 27
4.3.3 Configuration . 28
4.3.4 Operation . 29

xii CONTENTS

4.3.5 Elucidative Development, Grammar-Based Modular-
isation and Slots . 30

4.4 Presentation Layer . 31
4.4.1 Updating Computed Document Fragments 31
4.4.2 Displaying Incomputable References 31
4.4.3 Chaining Slots . 31

4.5 Guidance . 36
4.5.1 Formal Definition of the Guidance State 36
4.5.2 Artefact State Chart 38
4.5.3 Artefact Reference State Chart 40
4.5.4 Document Reference State Chart 43
4.5.5 Example . 46

4.6 Conclusion . 50

5 Model-Driven Elucidative Development 51
5.1 General Idea and Running Example 51
5.2 Requirements of Model-Driven Elucidative Development . . . 55
5.3 Structure and Basic Concepts of Elucidative Documents in

Model-Driven Elucidative Development 56
5.3.1 The Unison of Active Reference Groups and CDF Groups 56
5.3.2 Active Reference Group 58
5.3.3 Static Reference Group 59
5.3.4 Dynamic Reference Group 64

5.4 Guidance . 72
5.4.1 Hierarchical Guidance Messages 73
5.4.2 Guidance for Static Reference Groups 74
5.4.3 Guidance for Dynamic Reference Groups 75

5.5 Conclusion . 76

6 Extensions of Elucidative Development 77
6.1 Validating XML-based Elucidative Documents 77

6.1.1 Difference between XML and LATEX documents 78
6.1.2 Structured Documents and Validity 79
6.1.3 Structured Elucidative Documents and Validity 83

6.2 Backpropagation-Based Round-Trip Engineering for Com-
puted Text Document Fragments 88
6.2.1 Introduction to Backpropagation-Based Round-Trip

Engineering . 88
6.2.2 Application to Elucidative Development – An Example 89

6.3 Conclusion . 95

CONTENTS xiii

7 Tool Support for an Elucidative Development Environment 97
7.1 Managing Active References 97
7.2 Inserting Computed Document Fragments 100

7.2.1 Document File Manipulation vs. Editor API 100
7.2.2 Unifying CDF Insertion with Integrators 104
7.2.3 Handling Images . 106

7.3 Caching the Computed Document Fragments 106
7.3.1 Instant Update . 107
7.3.2 Deferred Update . 107
7.3.3 Discussion . 108

7.4 Elucidative Document Validation with Schemas 109
7.4.1 Restricting the Possible Active Reference Types 109
7.4.2 Using Subtrees as Active References 110
7.4.3 Nillable Active References 111

7.5 Conclusion . 112

8 Related Work 115
8.1 Related Documentation Approaches 115

8.1.1 Literate Programming 115
8.1.2 Literate Modelling . 120
8.1.3 Elucidative Programming 123

8.2 Consistency Approaches . 128
8.2.1 Transclusion . 128
8.2.2 Transconsistency and Active Documents 130

8.3 Compound Documents . 132
8.3.1 Object Linking and Embedding 132
8.3.2 OpenDoc . 133
8.3.3 The W3C Compound Document by Reference Frame-

work . 134
8.3.4 HotDoc . 135

8.4 Conclusion . 135

9 Evaluation 137
9.1 Creating and Maintaining the Cool Component Specification . 137

9.1.1 Rewriting the Specification with ED 138
9.1.2 Finding Inconsistencies in the Manual Specification . . 140
9.1.3 Updating the Specification to a new Metamodel Version141
9.1.4 Discussion . 142

9.2 Creating and Maintaining the UML Specification 142
9.2.1 Preparing DEFT for UML 144
9.2.2 Writing and Updating the Package Section 145

xiv CONTENTS

9.2.3 Discussion . 145
9.3 Feasibility Studies . 145

9.3.1 Visualising Requirements 145
9.3.2 Documenting a BPMN Refinement Library 150
9.3.3 Writing a PhD thesis about Elucidative Development

with DEFT . 152
9.4 Conclusion . 154

10 Conclusion 155

A Cool Component Specification 159
A.1 Metamodel Preparation . 159
A.2 Inconsistencies in the Manual Specification 160

A.2.1 Convention Errors in Running Text Cross-References . 160
A.2.2 Convention Errors in Metaclass Characteristics Listings 161
A.2.3 Misspelled and Wrong Identifiers 161
A.2.4 Wrong Metaclass Properties 162
A.2.5 Wrong Model Diagrams 162

A.3 Update of the Specification . 162

B UML Specification 165
B.1 Metamodel Changes . 165
B.2 OCL Changes . 166

B.2.1 OCL errors . 166
B.2.2 Changes for UML 2.3 168

Bibliography 169

List of Figures xv

List of Figures

2.1 Types of view overlaps. 6
(a) Partial overlap. 6
(b) No overlap. 6
(c) Full overlap. 6

2.2 Overlapping views of a software system. 7

3.1 Model transformations. 15
3.2 Round-trip via inverse transformation. 16

4.1 Document with computed text fragments and a figure. 21
4.2 Elucidative document metamodel. 23
4.3 Elucidative Development overview. 24
4.4 Different kinds of active references. 25
4.5 Configuration dialogue examples. 29
4.6 Operation as data-flow diagram. 29
4.7 Dataflow graph for weak transconsistency. 33
4.8 Operation with multiple outputs. 34
4.9 Detailed dataflow graph with intermediate operation results. . 34
4.10 Artefact state chart. 38
4.11 Artefact reference state chart. 41
4.12 Document reference state chart. 44
4.13 Updated and corrected documentation. 47

5.1 Documentation of a class diagram. 53
5.2 CDF groups. 54
5.3 Model driven elucidative development metamodel. 57
5.4 Static reference groups can contain arbitrary document content. 60
5.5 Static group expander with operations. 61
5.6 Static group expander with a dynamic group expander. 62
5.7 Dynamic group expander. 66
5.8 Matching model elements from different artefact versions. . . . 70

xvi LIST OF FIGURES

5.9 Hierarchical guidance messages. 74

6.1 Example document with cross reference. 80
6.2 Mapping from document to XHTML grammar. 83
6.3 Elucidative document as tree. 85
6.4 Mapping from elucidative document to XHTML grammar. . . 87
6.5 Backpropagation-based round-trip engineering. 89
6.6 Skeletons and clothings of source and target artefacts. 90
6.7 Configuration determines replacement of syntax tree nodes. . . 92
6.8 Computing ranges from the syntax tree. 94

7.1 Scenario 1 – Active reference ID missing in document. 99
7.2 Scenario 2 – Inconsistent deletion status. 99
7.3 Scenario 3 – Identical active reference IDs in document. 99
7.4 Scenario 4 – Inconsistent active reference location. 100
7.5 Using an integrator to insert a CDF into a document. 105

8.1 Related documentation approaches: general overview. 116
8.2 Literate Programming overview. 117
8.3 Literate Modelling overview. 122
8.4 Elucidative Programming overview. 123
8.5 Relations of an elucidative program. 125
8.6 Synthesised elucidative program with three frames. 127
8.7 Transclusion. 129
8.8 Transconsistent dataflow graph. 131
8.9 Excel table in Word. 133

(a) Excel table: graphical representation. 133
(b) Excel table: activated. 133

9.1 Excerpt of the Cool Component Model specification. 139
9.2 Excerpt of the UML specification. 143
9.3 The Requirements Ontology in ODRE. 147
9.4 A generated traceability matrix in DEFT. 148
9.5 A generated requirements hierarchy tree in DEFT. 149
9.6 Excerpt of the BPMN Refinement Library tutorial. 151

List of Tables xvii

List of Tables

8.1 Comparison of advanced documentation approaches. 116

xviii LIST OF TABLES

List of Listings xix

List of Listings

6.1 Example document as HTML. 80
6.2 Formal definition of the example document. 81
6.3 Tree grammar of XHTML subset. 82
6.4 Excerpt of the formal definition of the elucidative document. . 85
6.5 Source code artefact. 91
6.6 Configuration. 91
6.7 Resulting code listing. 92
7.1 Div element in an XHTML document. 109
7.2 Table element in an XHTML document. 110
7.3 Nillable table element declaration. 111
7.4 Nil table in an XHTML document. 112
9.1 Cached LATEX CDFs. 153

xx LIST OF LISTINGS

Acronyms xxi

Acronyms

API Application Programming Interface.

AR Artefact Removal.

AU Artefact Update.

BPMN Business Process Modelling Notation.

CASE Computer-Aided Software Engineering.

CCM Cool Component Model.

CDF Computed Document Fragment.

CIM Computation Independent Model.

COM Component Object Model.

CORBA Common Object Request Broker Architecture.

DEFT Development Environment For Tutorials.

DSL Domain Specific Language.

DTD Document Type Definition.

EAT Energy Auto-Tuning.

ED Elucidative Development.

EDE Elucidative Development Environment.

EP Elucidative Programming.

GBM Grammar-based Modularisation.

xxii Acronyms

GUI Graphical User Interface.

HTML Hypertext Markup Language.

IBM International Business Machines Corporation.

JSP Java Server Pages.

LiMonE Literate Modelling Editor.

LM Literate Modelling.

LP Literate Programming.

MDA Model-Driven Architecture.

MDSD Model-Driven Software Development.

MOF Meta Object Facility.

MOST Marrying Ontology and Software Technology.

OCL Object Constraint Language.

ODF Open Document Format.

ODRE Ontology-Driven Requirements Engineering.

OLE Object Linking and Embedding.

OMG Object Management Group.

PDF Portable Document Format.

PIM Platform Independent Model.

PREP Propagate Replay Evaluate Pick.

PSM Platform Specific Model.

QVT Query/View/Transformation.

RO Requirements Ontology.

RTE Round-Trip Engineering.

Acronyms xxiii

RTF Rich Text Format.

SMIL Synchronized Multimedia Integration Language.

SOM System Object Model.

SVG Scalable Vector Graphics.

SVN Subversion.

TGG Triple Graph Grammar.

UML Unified Modeling Language.

UNO Universal Network Objects.

URL Uniform Resource Locator.

W3C World Wide Web Consortium.

WWW World Wide Web.

WYSIWYG What You See Is What You Get.

XHTML Extensible Hypertext Markup Language.

XML Extensible Markup Language.

XSLT Extensible Stylesheet Language Transformations.

xxiv Acronyms

Chapter 1. Introduction 1

Chapter 1

Introduction

Software is subject to changes during its entire lifetime. In the early phases
of the software life-cycle, documents are written and models, such as Unified
Modeling Language (UML) use-case diagrams, are created. Based on those
documents and models, program code is written. Software development is
usually an iterative process. Many of the documents and models and much
of the code are revised multiple times, both during the initial creation and
maintenance of the software.

The reasons for document changes during software development are mani-
fold. Requirements specifications are written in multiple iterations. Architec-
ture documentation is written early in the development process, but unfore-
seen technological or organisational problems might require modifications.
Application Programming Interface (API) documentation and example-style
tutorials are important for software libraries, frameworks, or software with
plug-in interfaces. When the API changes, the documentation must be up-
dated accordingly. End-user documentation explains the usage of the soft-
ware to the end user. It contains instructions for the achievement of certain
goals, often enriched with screenshots of the Graphical User Interface (GUI).
When the software changes such that it affects the GUI, the instructions and
screenshots must be changed, too.

In practise, documents, models and code often change at different paces.
Document updates are frequently omitted because they are expensive and
do not pay off immediately. Consequently, documents are often outdated.
Outdated documents communicate wrong information about the software.
The severity of outdated information can range from a minor inconvenience
for the reader to complete uselessness. In any case, outdated documents are
generally a problem during software development and maintenance.

2 Chapter 1. Introduction

1.1 Contributions
This thesis makes several contributions to the field of document manage-
ment and consistency enforcement. The main contribution of this thesis is
the introduction of Elucidative Development (ED), a novel approach, which
simplifies the creation and maintenance of documents which describe soft-
ware artefacts. ED is based on partial generation, i.e., some content of a
document is generated and some content is handwritten. In contrast to na-
ive approaches, ED takes care that handwritten content is not destroyed
when documents are regenerated. Another noteworthy characteristic of ED
is the tight integration of a guidance system, which helps the author keep
the documents in a consistent state.

There are many kinds of documents in the software development life-cycle,
which differ by their level of formality. Based on the definition of document
formality we present ED as an extensible approach for document creation
and maintenance.

∙ First, we introduce the basic concepts of ED and show how they can
be applied to semi-formal documents.

∙ Then, we extend ED for the application to formal documents.

We also present two other extensions, which do not depend on the for-
mality of documents.

∙ Documents written with ED contain special directives, which control
the content generation. These directives prevent standard validation
approaches, such as checking an Extensible Markup Language (XML)
document against a schema. We show possibilities to validate these
documents nonetheless.

∙ Sometimes it is desirable to modify generated document content and
propagate the change to the original data, from which the content
has been generated. We show how this can be achieved by employ-
ing backpropagation-based round-trip engineering.

Our second big contribution is the evaluation of ED to show its appli-
cability and versatility. In two case studies, we show how ED improves the
document quality and eases the document maintenance. Then, we present
many examples of the successful application of ED.

Our third big contribution is the comparison with related work because
ED is based on many existing ideas. This includes the discussion of related
documentation approaches from the literature, such as Literate Programming

Chapter 1. Introduction 3

(LP) or Elucidative Programming (EP), as well as consistency management
concepts, such as transclusion and transconsistency.

1.2 Scope of the Thesis

In this thesis, we concentrate on the theoretic and technical aspects of ED.
This includes the problems of computing document content from arbitrary
views of a software system, embedding it into documents, and keeping it
up to date. We neither discuss how the other views can be kept consistent,
nor organisational rules that help the author decide when to write or update
documents. We presume that the consistency of views can be achieved to
a satisfactory degree and that the author knows when documents must be
written or updated.

Furthermore, we do not explicitly consider the collaboration of multiple
authors on the same document. We do not forbid multiple authors working
on one document, but we also do not promote it. In this thesis we refer to
both a single author and a group of authors as “the author”.

1.3 Organisation

In Chap. 2, we explain the necessity of redundancy in a software system in
general and how it can lead to inconsistency. Then, we motivate full and
partial generation as possibilities to keep formal and semi-formal documents,
such as requirements analyses, specifications and documentation, consistent
with the rest of the software system.

In Chap. 3, we present some background information on concepts and
technologies, which are used in the thesis. The aim of this chapter is to
introduce the reader to these concepts and technologies.

In Chap. 4, we propose the novel approach ED for the semi-automatic
creation and maintenance of semi-formal documents. We present a number
of challenges that must be solved and derive requirements that ED must
fulfil. This includes the partial generation of content, ensuring that generated
content is always up to date, and a guidance mechanism that informs the
author about outdated or recently updated content. Afterwards, we show
the realisation of these requirements.

In Chap. 5, we show how ED can be used in a Model-Driven Software
Development (MDSD) setting. We explain, why the basic ED approach from
Chap. 4 is not sufficient for uniformly structured, formal documents, such as

4 Chapter 1. Introduction

the UML specification. Based on this, we present extensions, which overcome
these limitations.

In Chap. 6, we present further extensions of ED, namely:

∙ support for structural validity checking, such as checking an XML doc-
ument against a Document Type Definition (DTD)

∙ support for round-trip engineering, which allows the synchronisation of
changes in the document with the described software artefacts.

In Chap. 7, we give recommendations regarding the implementation of
an Elucidative Development Environment (EDE). This includes technical
optimisations of the concepts presented in Chap. 4 and 6, but also thoughts
about reusing existing tools and editors for ED.

Afterwards, in Chap. 8, we review the concepts and techniques that have
influenced ED. Unlike in Chap. 3, we also compare these concepts and tech-
niques to ED. Additionally, we show concepts and technologies that did not
explicitly influence ED, but which are related.

In Chap. 9, we present several evaluations that show the applicability and
usefulness of ED. The evaluations have been performed with our EDE called
Development Environment For Tutorials (DEFT).

Finally, we summarise the results of this work in the conclusion in
Chap. 10.

Chapter 2. Problem Analysis and Solution Outline 5

Chapter 2

Problem Analysis and Solution
Outline

In this chapter, we explain the connection between redundancy and incon-
sistency, and show how generation (i.e., automatic document creation from
existing data) improves consistency between documents and other parts of a
software system. Since complete generation is not always possible, we present
the advantages and disadvantages of partial document generation and show
which kinds of documents are suited for partial generation.

2.1 Redundancy and Inconsistency

Software systems are usually not defined in one big, all-encompassing model,
but they consist of a multitude of different parts from multiple technological
spaces, such as requirements, class diagrams, or source code. These parts
describe a software system “from different angles and in different levels of
abstraction, granularity and formality” [52]. We call these parts views, in
accordance with [20].

All views of a software system share information with one or more other
views. This overlap of information is called redundancy. Redundancy is
necessary to connect several views to one coherent description of the software
system. Redundancy can be very technical, for example a Java class that
corresponds to a Unified Modeling Language (UML) class. But redundancy
can also be very abstract, such as the existence of a certain concept, which
appears in several views.

Two different views can overlap partially, fully, or not at all. Figure 2.1
shows examples, inspired by a figure from [20].

6 Chapter 2. Problem Analysis and Solution Outline

Use Case
"Connect Shapes"

Class Diagram
"Shapes"-Package

(a) Partial overlap.

Use Case
"Connect Shapes"

Code
"Color

Management"

(b) No overlap.

Javadoc

Code

Class
Model

Code

(c) Full overlap.

Figure 2.1: Types of view overlaps.

In Fig. 2.2, there is an example of 5 views referring to the ability of a
drawing tool to draw shapes and connections. In other words, the information
that the tool allows for drawing shapes and connecting them is contained
redundantly in different views.

The use-case diagram and the class diagram in Fig. 2.2 are partially
redundant, as represented by Fig. 2.1a. Both contain information regarding
shapes and their connections. The overlap in this case is rather small. It
comprises the fact that the user can connect shapes with the drawing tool.
The views represented by Fig. 2.1b do not share any information and thus
contain no redundancy. The use-case of connecting shapes, represented by
the use-case diagram, has nothing to do with colour management and its
implementation. Figure 2.1c shows that there are cases where one view
is completely contained within another view. This means that the inner
view (the view represented by the inner circle in the figure) is completely
redundant and does not provide any additional information. It is not useless,
though. Two completely redundant views usually have a different level of
detail and stem from different phases of the software development process.
For example, the inner view could be a UML diagram and the outer view
(correspondingly, the view represented by the outer circle in the figure) could
be the source code whose skeleton has been generated from the diagram, i.e.,
the outer view is a refinement of the inner view from a later development
phase. Another possibility is that the inner view has been transformed from
the outer view to contain only a subset of the information, but in a clearer
and more concise fashion. This would be the case with Javadoc, which can
be generated from Java source code.

Chapter 2. Problem Analysis and Solution Outline 7

1

A
rt

is
t

C
o

n
n

ec
t

Sh
ap

es

D
ra

w
Sh

ap
es

..
.

…
F2

.4
.8

 C
o

n
n

e
ct

o
rs

 S

h
ap

es
 c

an
 b

e
co

n
n

ec
te

d
 b

y
lin

es
.

 S

h
ap

es
 h

av
e

o
n

e
o

r
m

o
re

 c
o

n
n

ec
to

rs

 w

h
ic

h
 a

re
 t

h
e

en
d

p
o

in
ts

 o
f

th
e

 c

o
n

n
ec

ti
o

n
 li

n
es

. …

R
eq

u
ir

em
en

ts
Sp

ec
if

ic
at

io
n

C
la

ss
 D

ia
gr

am

p
u
b
l
i
c

i
n
t
e
r
f
a
c
e

S
h
a
p
e

{

p
u
b
l
i
c

L
i
s
t
<
C
o
n
n
e
c
t
o
r
>

g
e
t
C
o
n
n
e
c
t
o
r
s
(
)
;

}

So
u

rc
e

C
o

d
e

U
se

 C
as

e
D

ia
gr

am

…
If

 a
 s

h
ap

e
w

h
ic

h
 is

 c
o

n
n

ec
te

d
 t

o
 o

n
e

o
r

m
o

re

o
th

er
 s

h
ap

es
 is

 m
o

ve
d

 a
ro

u
n

d
, t

h
e

co
n

n
ec

ti
o

n

lin
es

 a
re

 r
ed

ra
w

n
 a

cc
o

rd
in

gl
y.

Th
e

lin
es

 a
re

 a
tt

ac
h

ed
 t

o
 t

h
e

sh
ap

es
 b

y
co

n
n

ec
to

rs
. E

ac
h

 k
in

d
 o

f
sh

ap
e

h
as

 s
ev

er
al

co

n
n

ec
to

rs
, w

h
ic

h
 a

re
 d

is
tr

ib
u

te
d

 a
lo

n
g

th
e

co
n

to
u

r
o

f
th

e
sh

ap
e.

..
.

D
o

cu
m

en
ta

ti
o

n

h
as

 s
h

ap
es

co
n

n
ec

ts
sh

ap
es

D
ra

w
in

g
To

o
l

Figure 2.2: Overlapping views of a software system.

8 Chapter 2. Problem Analysis and Solution Outline

If views contain redundant information, they can become inconsistent.
This is because the views “overlap – that is, they incorporate elements which
refer to common aspects of the system under development – and make asser-
tions about these aspects which are not jointly satisfiable” [52]. We call this
kind of inconsistency global inconsistency [19]. Correspondingly, we speak of
global consistency if all assertions are satisfiable.

Besides global inconsistency, there can also be local inconsistency. Local
inconsistency arises from contradictions within the same view. Correspon-
dingly, we speak of local consistency if the view contains no contradictions.

Since redundancy cannot be avoided, redundant descriptions of the soft-
ware system must somehow be kept consistent. This can be achieved manu-
ally or with tool support. Keeping multiple views of a software system con-
sistent manually is usually very difficult and time-consuming due to the sheer
amount of information that overlaps. Tools can aid to some degree. For ex-
ample, a model-to-text transformation tool can create a source code skeleton
from a UML class diagram, with all defined classes, attributes, methods and
relationships. Unfortunately, tool support is not available for all kinds of
overlapping views. Therefore, inconsistency is still a problem in today’s soft-
ware development.

2.2 Improving Consistency with Partial Gener-
ation

As shown in Fig. 2.2, documents, such as specifications and documentation,
are also views on a software system.

Definition 1 (Document). Documents are special views on a software sys-
tem. Their content is primarily meant to be read by humans. Usually, they
consist mostly of text, but they can also include structured information, such
as tables or listings, and media, such as images.

Since documents are views on a software system, they contain redun-
dancy. They are mostly handwritten, i.e., written by humans, which makes
them susceptible to inconsistencies. Global inconsistencies occur if the doc-
uments describe other views incorrectly. During the initial creation of a
document, the author might accidentally omit important information or in-
clude wrong information due to a lack of understanding. Another source of
inconsistencies are incorrect references to other views, such as mentioning a
UML class which does not exist in the UML class diagram. Local inconsisten-
cies occur if different parts of one document contradict with each other. An

Chapter 2. Problem Analysis and Solution Outline 9

example of a local inconsistency is a code listing in a documentation which
contains a method connectShapes(), and explanatory text which calls the
same method connect().

If the documented views of the software system are changed after a doc-
ument has been written, the document can also become inconsistent. We
say that the document is outdated. Outdated documents must be updated to
make them consistent again. The first step of a document update is to find
all outdated parts. If even one outdated part is not found, the document
cannot become consistent. But even if all outdated parts are identified, it is
still necessary that they are updated correctly. Failing to do so can result
in a globally and locally inconsistent document. Global inconsistency arises
if some parts of the document do not correspond to the rest of the software
system. Local inconsistency arises if the document contains contradictory
outdated and updated information at the same time.

In some cases, document generation can be used to prevent inconsisten-
cies. Documents are generated by a transformation whose input are views
with formal content, such as source code or UML models. Assuming that
the transformation works correctly, generated documents are both locally
consistent and globally consistent to the view(s) from which they are gener-
ated. Whenever generated documents are outdated, the transformation can
be executed again and new, updated documents are created.

Generated documents can only contain information which already exists
in other views. However, they can present the information in a way that
is easier to understand by humans. An example is Javadoc documentation,
as indicated in Fig. 2.1c. The Javadoc tool can create a navigable set of
Hypertext Markup Language (HTML) documents, which contain for each
Java class and interface all fields and methods, together with documentation
text that has been annotated to the source code. Javadoc also makes implicit
information explicit. Among others, the generated documentation shows
the inheritance hierarchy for all classes and interfaces, and it shows for all
methods which superclass methods they override.

If documents contain new information, i.e., information that does not
already exist in other views, they cannot be fully generated. However, they
can be partially generated. After the generation, the author can add the
missing information manually. The update of outdated partially generated
documents is difficult. A regeneration is not easily possible, because the
handwritten content would be overwritten. A manual update by the author
has the same disadvantages as the update of completely handwritten doc-
uments. Therefore, partial generation is rarely used in contrast to manual
document writing. The main goal of this thesis is to present a partial gener-
ation approach, which overcomes these problems.

10 Chapter 2. Problem Analysis and Solution Outline

The degree to which a document can be generated depends on its level
of formality. We distinguish between informal, semi-formal and formal doc-
uments, but the boundary is blurred. Usually, the latter are used to describe
formal views. A formal view is a view which has a well-defined syntax and
possibly static or dynamic semantics. Examples are source code or UML
models, such as class diagrams.

Definition 2 (Informal Document). Informal documents describe the soft-
ware system in an abstract way. They give a high-level overview and omit
details. The structure and the content of informal documents are primarily
determined by the author. It is the author’s choice, which topics to emphas-
ise, which topics to omit, and how to arrange the content.

An example of an informal document is an introductory documentation
of the software, which sketches its overall goal and outlines the most im-
portant features. Informal documents are usually the first documents read
by someone who wants to learn about the system. They are not suited for
generation, so they are manually created and maintained by the author.

Definition 3 (Semi-formal Document). Semi-formal documents describe a
formal view or related formal and informal views of the software system in
more detail. They do not necessarily describe the view(s) exhaustively. A
substantial part of a semi-formal document contains information on a very
technical, formal level. Apart from that, there is additional, more abstract,
background information.

An example of semi-formal documents are so-called “How To” cook-
books [3]. They are task-oriented framework documentations for software
developers. They contain code examples of framework instantiation, option-
ally together with explanatory text. The targeted audience of semi-formal
documents are usually persons who are starting to get involved with the
details of the system. Semi-formal documents can be partially generated.

Definition 4 (Formal Document). Formal documents describe formal views
or some parts of a formal view. They are comprehensive and the author
does not emphasise or omit any parts. Formal documents usually contain
a number of uniformly structured chapters and sections, and the document
structure follows the structure of the view.

An example of a formal document is generated Javadoc documentation.
Another example, which is slightly less formal, is the UML 2.3 superstructure
specification1. It contains, among other information, descriptions of all UML

1http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

Chapter 2. Problem Analysis and Solution Outline 11

metaclasses. Each class description consists of an enumeration of supertypes
(“generalizations”), a textual description, a listing of attributes and associ-
ations together with their descriptions, and more. The targeted audience of
formal documents are usually persons who already have some knowledge of
the system (or at least the view) and want to look up more details. Formal
documents can be partially generated. If all of their content can be computed
from other views, they can even be fully generated.

The need for partial generation in document writing and the correspon-
ding tool support has also been mentioned in the literature. One example
is a survey, which identifies several attributes that influence the quality of
documentation [21]. The most important ones are documentation content,
actuality (i.e., global consistency), availability and the use of examples. A lot
of participants of the survey thought that much information can be extrac-
ted from source code. They generally saw the automation of documentation
positively. However, they also admitted that full automation is not possible,
because the automated documentation tools “don’t collect the right informa-
tion”. Consequently, most of the participants find a tool useful that can track
changes in a software system for the purpose of documentation maintenance.
For example, such a system would identify all parts of the documentation
that refer to changed source code. The authors suggest that “the techno-
logy support traceability among documents as well as between source code”.
Thus, the survey showed that documentation systems with partial document
generation and guidance support for the documentation author are needed.

An improved approach for the creation and maintenance of consistent
documents and the corresponding tool support is not only needed for docu-
mentation. This is evident from many papers which point out inconsisten-
cies in the UML specification, for example [9, 61]. The UML specification is
written and maintained manually, and many of the identified inconsistencies
could have been avoided with tool support.

2.3 Conclusion
In this chapter, we discussed the necessity of redundancy in software systems
and the resulting consistency problems. We presented generation and par-
tial generation as possibilities to ensure consistency, depending on the docu-
ment’s level of formality. Partial generation has been identified as promising
approach for the creation and maintenance of semi-formal and formal docu-
ments, but the problem is that manually written content is overwritten when
the document is regenerated. Finding a solution to this problem is the main
goal of this thesis.

12 Chapter 2. Problem Analysis and Solution Outline

Chapter 3. Background 13

Chapter 3

Background

In this chapter, we present an overview of various technologies, on which the
thesis relies. It is meant as a short introduction, where the basic principles of
the technologies are explained. Additionally, this chapter contains citations,
which can serve as a starting point for further, more detailed, investigations.

First, we present Grammar-based Modularisation (GBM), an approach
for software composition. Then, we introduce Model-Driven Software Devel-
opment (MDSD), a software development methodology which relies on mod-
els and transformations. Finally, we cover Round-Trip Engineering (RTE),
whose purpose is to keep multiple views of a software system consistent.

3.1 Grammar-Based Modularisation
GBM is a modularisation approach first proposed by [6]. It allows the defi-
nition of programs with “holes”, which can later be filled with fragments in a
type-safe manner. The basic building block in GBM is a form. A form is a
sentential form of the language. For example, an A-form is a sentential form
which has been derived from the nonterminal A. “A” is called the syntactic
category. If a form additionally has a name, it is called a fragment form.

The following example is taken from [25]. It shows a datalog rule-form,
which contains two nonterminals: ⟨num⟩ and ⟨atom⟩:

bonus(X, ⟨num⟩) :- employee(X), ⟨atom⟩.
In GBM, nonterminals, which are meant to be replaced by fragments, are

called slots. Thus, slots are an area of variability. They have a name and
a syntactic category. In the following example, the nonterminals have been
replaced by slots:

bonus(X, «SLOT value:num») :- employee(X), «SLOT condition:atom».

14 Chapter 3. Background

Slots can be replaced by fragment forms with the same name and the same
syntactic category. Complete programs are assembled by binding fragment
forms to declared slots recursively.

3.2 Model-Driven Software Development

MDSD is a software development method, which uses transformations to
generate software from formal models. Formal models1 have an abstract
syntax and static semantics, which can be defined by a metamodel [53]. The
abstract syntax can be expressed by one or multiple concrete syntaxes, or
Domain Specific Languages (DSLs). For example, the well known graphical
notation with boxes and arrows is one possible concrete syntax for Unified
Modeling Language (UML) class diagrams. Additionally, there are several
textual DSLs2 [24].

A metamodel itself is also a formal model and has a structure. This
structure is described by its metametamodel. Well-known examples of meta-
metamodels are Meta Object Facility (MOF)3 and Ecore4. Ecore is an im-
plementation of Essential MOF, a MOF subset.

Models are often only created for documentation purposes. In MDSD,
however, models are first-class development artefacts. Multiple models are
used to describe different structural and behavioural aspects of the software
system. Thus, models are views, or parts of views, of the software system.

Models have different levels of abstraction. The distinction is blurred,
as we will see from slightly inconsistent naming schemes in the literature.
At the most abstract level, there are domain-specific models, i.e., models,
which describe the domain of the software system, for example aviation or
logistics. A domain-specific model is abstracted from programming languages
and platforms. In Model-Driven Architecture (MDA), which can be seen as
a specialisation of MDSD, a domain-specific model is called Computation
Independent Model (CIM)5. The term Platform Independent Model (PIM) is
used for a model which describes the software “system, but does not show
details of its use of its platform”. In [53], on the other hand, a domain-specific
model is called PIM.

1We are aware that the notion of formality is also sometimes used to include dynamic
semantics. This is not the case in this thesis. Here, we use the definition from [53].

2http://modeling-languages.com/uml-tools/#textual
3http://www.omg.org/mof/
4http://www.eclipse.org/modeling/emf/
5http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Chapter 3. Background 15

A CIM or PIM can be transformed into a more technical model via a
model-to-model transformation. Models which contain platform-specific in-
formation are called Platform Specific Models (PSMs). The final transforma-
tion step usually generates code from a PSM and is therefore called model-
to-code transformation. A PIM can be transformed into a PSM in one single
transformation, or it can be transformed stepwisely, using multiple trans-
formations. The decision depends on the requirements of the software pro-
ject and is made by the developers. Figure 3.1, which is based on a figure
from [53], shows an example transformation chain from a PIM via multiple
PSMs to code.

PIM
PSM

(Components)

PSM
(Enterprise

Java Beans 2.0)

PSM
(WebLogic
Server 12)

Code
(Java + XML)

Transformation Transformation

Transformation

Transformation

Figure 3.1: Model transformations.

Model-to-model transformations are defined as mapping between the
source and the target metamodel. The source and the target metamodel
can be the same or different. If the target model is more platform-specific
than the source model, the metamodels usually differ. The source and the
target metamodel have the same metametamodel.

Model-to-code transformations, on the other hand, usually have no target
metamodel. The target code is created by outputting text, possibly using
a template engine. However, the input of a model-to-code transformation
must still be based on a metamodel.

3.3 Round-Trip Engineering
According to [4], “the goal of round-trip engineering is keeping a number
of artifacts, such as models and code, consistent by propagating changes
among the artifacts. Making artifacts consistent by propagating changes is
also referred to as synchronization. Round-trip engineering is a special case

16 Chapter 3. Background

of synchronization that can propagate changes in multiple directions, such
as from models to code and vice versa”.

The idea of RTE is closely related to the view update problem of relational
databases. Here, the term view has a different meaning than in the rest of
the thesis. We understand a view as a simplified representation of database
content. Queries against the view can be easily evaluated because they can
be mapped to queries against the original database. However, this is not
the case with update operations. A mapping of view update operations to
database operations may not be unique or it may not exist at all. This
is called the view update problem and has been extensively studied by the
database community starting in the late 1970’s.

The automatic translation of view updates into corresponding database
updates was analysed in [18]. The work also takes integrity constraints on
the schemata into account. Another approach was followed in [28]. It was
proposed that at the time of the view definition an update translator must
be chosen, which translates view updates into database updates in a certain
manner. The underlying assumption was that the database administrator
who defines the view knows best which database update strategy to employ
for certain view updates.

In general, the view update problem is the problem of modifying gener-
ated data and keeping it consistent with the original data. This problem also
occurs in software development, as we have outlined above. RTE systems
usually synchronise artefacts by applying inverse transformations, as illus-
trated in Fig. 3.2. Unfortunately, this does not work for many real world
scenarios, because there are transformations which do not have an inverse,
or whose inverse is difficult or impossible to compute.

Source Target

Source'

d

Target'

t

tinverse

Figure 3.2: Round-trip via inverse transformation.

Chapter 3. Background 17

Pierce et al. have introduced the notion of lenses for the synchronisation
of trees [22]. Lenses comprise two functions, which are used to formulate
bidirectional transformations. The first function is called get. It is a for-
ward transformation, which transforms a tree (called concrete tree) into an
abstract tree, i.e., a tree which contains less information than the concrete
tree. The second function is called putback. It is a transformation which
transforms a modified abstract tree into a modified concrete tree. The put-
back function computes the modified concrete tree from the original concrete
tree, the abstract tree, and the modified abstract tree. In [11] the concept
of lenses has been applied to relational data. Lenses were defined whose get
and putback functions could synchronise databases and views.

Another means to formulate bidirectional transformations are Triple
Graph Grammars (TGGs) [46]. TGGs establish relationships between two
or more graphs, which conform to different graph grammars, by means of a
correspondence graph. The correspondence graph also conforms to a gram-
mar, the so-called correspondence grammar, hence the name Triple Graph
Grammar. Even though TGG rules are purely declarative, they can be used
as input for unidirectional or bidirectional transformation tools. Since mod-
els are graphs, too, TGGs can also be used to specify the relationship and
transformations between models. For example, Fujaba6, a Computer-Aided
Software Engineering (CASE) tool for model-based software engineering and
re-engineering, uses TGGs for model synchronisation [29,30].

The Query/View/Transformation (QVT) model transformation lan-
guage, which has been standardised by the Object Management Group
(OMG), has been developed to specify relations between MOF-based models.
QVT is in many respects very similar to TGGs. A comprehensive comparison
is presented in [23].

3.4 Conclusion

In this chapter, we shortly introduced three technologies and approaches,
which are the foundations of some of the contributions presented in the fol-
lowing chapters.

GBM is a modularisation and composition approach for source code. It
allows the specification of typed slots in a program. A running program can
be composed by filling the slots in a type-safe manner with typed fragments.

MDSD is a software development methodology which uses models as first-
class development artefacts. Models can describe the domain of the software

6http://www.fujaba.de

18 Chapter 3. Background

system, but also concrete technical realisations. Transformations are used to
transform domain-specific models to more technical models and source code.

RTE is used to keep derived software artefacts, such as a generated model
or a database view, consistent with their sources, such as the source model or
a database table. When changes are made to the derived software artefact,
the source artefact is modified correspondingly. However, it is not always
possible to modify the source artefact automatically. There are many differ-
ent RTE approaches, each with their own strengths and weaknesses.

