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Abstract
Digital communication system have advanced tremendously over the last decades and
yielded applications such as high speed data transfer in LTE. In recent years, new com-
munication scenarios like machine-to-machine systems have evolved. These scenarios de-
mand for highly energy efficient receiver design as battery life is crucial in, e.g., sensor
networks. A large part of the receivers energy is consumed by the channel decoder, there-
fore code designs should be at hand, that exhibit low decoding complexity without any
loss in transmission performance. As the aforementioned applications also demand for a
flexible adaption of the coding rate for efficient transmission, code designs have to be
optimized for a wide rate interval. The recent ascent of LDPC convolutional codes as a
capacity achieving code construction makes them a promising option for these commu-
nication systems. The thesis is concerned with the investigation of LDPC convolutional
code constructions that on the one hand exhibit a good performance close to the Shannon
limit for a wide range of rates as well as adequate decoding complexity.

Already regular LDPC convolutional codes are capable of achieving the Shannon limit
when coupling length and width are chosen appropriately large. Their flexibility for achiev-
ing different rates is discussed and it is shown that with finite small coupling width, not
the complete rate region can be covered smoothly with low complexity good performing
code ensembles. Therefore, a new code construction is introduced that overcomes this issue
by using slight irregularity in the ensemble description. These code ensembles outperform
their regular counterparts for every considered rate.

The constraint of rate-compatibility adds a new restriction to the optimization of LDPC
convolutional code constructions. To assess the different rate-compatible extension struc-
tures, a framework based on multi-edge type LDPC codes is introduced. The capabilities
of regular rate-compatible LDPC convolutional codes are discussed and reveal that a
break-down in performance for lower rates is always due to increasing variable node de-
gree and can only be overcome by an increased coupling width. Based on this observation,
new code constructions with relaxed degree evolutions for different rates are introduced
and show significant performance increases and lower decoding complexity.

A similarity between the parity-check matrix structure of a nested rate-compatible code
and an LDPC convolutional code is investigated. It turns out that the goal of transferring
the good message propagation effects responsible for the performance improvement of
LDPC convolutional codes to the nested codes can not be accomplished completely. A new
double-banded parity-check matrix code construction is introduced with good decoding
performance but capacity approaching effect is out of reach due to the lack of self-similarity
in the decoding graph.
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Nomenclature

This section shall summarize the notational conventions used throughout the thesis. We
denote N as the set of natural numbers without zero, so N = {1, 2, . . . }. Sets are generally
denoted by calligraphic letters such as E . A specific code is also denoted by calligraphic
letters as it is defined as a set of codewords. If a code itself is meant or a set of codes
shall be clear from the context. Non-scalar variables are denoted by underlined letters,
e.g., H. Dimensions should be clear from the context. Further variables used in the thesis
are given in the following.

Z Integers
w Coupling width
L Coupling length (termination length)
S Set of code ensembles
SC Set of code ensembles according to constraint C
E {a} Expectation
Np Number of variable nodes in a protograph
Mp Number of check nodes in a protograph
Q Lifting factor for protographs
C Code
n Number of codebits (Number of variable nodes in a Tanner graph)
k Number of information bits
m Number of constraint equations in parity check matrix (Number of check nodes

in the tanner graph)
nt Number of code bits at time instant t
mt constraint equations in parity check matrix (Number of check nodes in the

tanner graph) at time instant t
I Number of iterations
i, j Index variables
l iteration index
me Number of edge types
t Index for time instant
LI inner periodicity
LO outer periodicity
a incremental redundancy step
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xviii Nomenclature

α maximum number of incremental redundancy steps
b width of the matrix band
D vector of information bits
X vector of coded bits (codeword)
Y vector of received bits
X̂ decoded codeword
0 all zero matrix/vector (dimensions according to context)
J Variable node degree
K Check node degree
X channel input random variable
Y channel output random variable
p(X) probability distribution of X
C channel capacity
εSh Shannon limit for BEC
Eb/N

Sh
0 Shannon limit for BIAWGN channel

L log-likelihood ratio
L log-likelihood function
R rate
Pb bit error probability
s number of sockets



Acronyms

AWGN additive white Gaussian noise

BEC binary erasure channel

BIAWGN binary-input additive white Gaussian noise

BMS binary memoryless symmetric

BP belief propagation

DE density evolution

HARQ hybrid automatic repeat request

HSPA high speed packet access

IR incremental redundancy

LDGM low-density generator-matrix

LDPC low-density parity-check

LDPCC low-density parity-check convolutional

LLR log-likelihood ratio

LT Luby transform

LTE Long Term Evolution

M2M machine-to-machine

MAP maximum a-posteriori

MET multi-edge type

ML maximum likelihood

NACK not-acknowledged
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SNR signal-to-noise ratio



Chapter 1

Introduction

The 21st century can without any doubt be entitled as the century of digital information
for everyone. Services to provide information have become ubiquitous in all areas of our
daily life such as mobile web browsing, getting information for the public transport or even
the last-minute buy of a ticket for a musical concert. The revolutionary paradigm change
from analog to digital communication was introduced in the middle of the last century
when Claude E. Shannon formulated a mathematical theory [Sha48] around the idea of
a unified information quantum which was referred to as bit and messages, consisting of
bits that represent information. The notion of the communication model he introduced
was concentrated around the communication channel, a medium that acts as a conveyor
for information. Unfortunately, this medium induces errors onto the transmitted bits. To
be able to reconstruct the original message, a mechanism was needed which is referred
to as channel coding. Shannon showed, that codes exist which can achieve a fundamen-
tal limit of information transmission, called the channel capacity but unfortunately gave
no way how these coding schemes should be constructed in practice. Since then, coding
theorists aimed for this final frontier of performance until a vast breakthrough with the
invention of Turbo Codes [BGT93] in 1993. These codes showed a practical construction
with an implementable decoder that gets performance very close to the Shannon limit.
Now the Shannon limit could be approached with a coding scheme of reasonable de-
coding complexity. Only shortly later, Gallagers low-density parity-check (LDPC) codes
[Gal63] were rediscovered by MacKay [MN95] with similar performance. The final frontier
for coding theorist did fall with the invention of LDPC convolutional codes by Jimenez
and Zigangirov [JFZ99] were an analytical proof was given in [KRU11] for their capacity
achieving characteristics. The advent of LDPC and Turbo codes has pushed performance
of current communication systems and even lead to new applications. The speeds of, e.g.
300Mbps in Long Term Evolution (LTE) or 42 Mbits in high speed packet access (HSPA)
nowadays are no longer out of reach from a practical perspective. Besides such communi-
cation systems, mainly focused on speed, new applications emerged on the market such
as machine-to-machine (M2M) communication. These systems are not characterized by
the speed of information delivery but other metrics such as latency, resilience and en-
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ergy efficiency. Sensor nodes, e.g., have to remain in functional condition for several years
without changing the battery. Some may now say that research on coding theory is dead
since the arrival at Shannon’s capacity limit but the opposite is true. Still many practical
considerations are unanswered and this thesis shall shed light on one of them. As the part
of channel coding has a major impact on the complexity of a receiver in, e.g., a sensor
node its impact on energy efficiency can not be neglected. The optimization for energy
efficient channel coding can be done in a twofold way. Either the optimization of a de-
coding algorithm can be pursued or the code constructions itself have to be optimized for
good performance with low-complexity. The latter part is the focus of this thesis.

The principle of channel coding is to encode a message consisting of k information bits
into a vector of n encoded bits by adding m = n − k additional redundant bits. The
basic parameter of a channel code is the code rate denoted by R = k/n. This quantity
characterizes the amount of redundant bits that have been added to the original infor-
mation message size. Intuitively the construction of a channel code for the most energy
efficient transmission can be achieved when the amount of redundant bits (redundancy)
is always kept as low as possible to obtain the shortest possible transmission time while
still a successful decoding is ensured with high probability.

Now, a transmission scheme can be imagined which first sends out as few bits as possible
and if the receiver is not able to decode, subsequent redundancy will be transmitted
additionally in an incremental fashion. With such a transmission scheme, the optimal
amount of redundancy is always guaranteed. To use such a transmission scheme, the
channel code has to be designed in a way to support this subsequent transmission. As
every step of incremental redundancy (IR) can be referred to as an own channel code,
we are concerned with the construction of code families and not only single codes. In
the construction of these codes two metrics are of importance, performance and decoding
complexity. The performance of the code construction shall be optimized to achieve or at
least approach the theoretical limits. On the other hand, good performance often comes
at the price of high decoding complexity so the metric of complexity should be kept low.
The interplay of these two metrics is the integral part of this thesis.

To motivate the use of this code constructions, shortly two communication scenarios shall
be introduced.

HARQ in LTE The ever growing increase in transmission speed of mobile communi-
cation standards has gained the need for efficient channel coding schemes that maximize
the transmission rate. The incorporation of hybrid automatic repeat request (HARQ) in
LTE supports this feature by subsequent transmission of redundancy based on the need at
the receiver. To use this transmission scheme, code designs are needed, that can produce
subsequent IR steps. Typically, a connection between transmitter and receiver is estab-
lished and a message with highest code rate (lowest amount of redundancy) is sent to the
receiver. Depending on the channel quality, the receiver can either decode the message or
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fails to decode because the channel is too bad for successful decoding. In case of decoding
failure the receiver sends a not-acknowledged (NACK) message to the transmitter, sig-
naling that it needs further redundancy for decoding. This procedure is continued until
a successful decoding at the receiver is possible. This assures that every receiver gets the
minimal amount of redundancy for the given channel quality and therefore maximizes its
information rate.

Multicast transmission for M2M Assuming a message (e.g., a configuration update)
shall be transmitted to a vast amount of different sensor nodes in a given area. Every
sensor node has to receive the same message but undergoes different channel qualities. A
classical code design for this scenario would have to construct the code with a code rate
as low as the receiver with the worst channel quality would need to successfully decode
the message. Inherently, this is of disadvantage for the sensor nodes with good channel
quality as they receive redundancy, they normally would not need for decoding but due
to the construction have to collect for complete reception. This approach certainly shows
a bad energy efficiency for the sensor nodes with good channels. To overcome this issue,
the transmitter of the multicast message uses a code construction capable of subsequently
transmitting redundancy in an incremental way. Then every receiver could just collect as
much redundancy as needed depending on its instantaneous channel quality. The amount
of redundancy per sensor node is minimized and therefore energy efficiency for every
sensor node in the communication system is maximized.

Scope, Outline and Contributions

The main focus of this thesis is on code constructions that can support different rates
and even further are able to be used in the two exemplary transmission scenarios de-
scribed above. As low-density parity-check convolutional (LDPCC) codes have superior
performance qualities, the thesis concentrates on these code constructions and tries to
gain insight in the possibilities and constraints of LDPCC code constructions for different
rates and additionally with the added constraint of rate-compatibility. The two core met-
rics that are used to assess the usability of LDPCC codes at different rates in this thesis
are summarized in the following two questions.

B How close can an LDPCC code construction get to Shannon limit for different rates?

B How high is the decoding complexity to achieve this performance?

The interplay between these two metrics shall be discussed in the chapters of this thesis
as follows.
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• In Chapter 2, the basic concepts, tools and definitions are given. LDPC codes and
their different definitions used throughout the thesis are explained and the perfor-
mance assessment for these are given. Additionally, LDPCC codes are defined and
their remarkable performance features are discussed. Finally, a definition for IR
and rate-compatible code construction shall lay the basis and terminology for later
discussions.

• The content of Chapter 3 investigates the observation of a similarity between the
banded structure of an LDPCC code and the structure of rate-compatible nested
codes. The chapter starts with an illustrative example of the similarity and its
initial performance assessment. These models are then generalized to understand
the mechanisms that lead to the performance differences for both ensembles. Finally,
the chapter concludes with a proposal for a code construction that helps to partly
overcome the issues of the nested codes.

• The focus of Chapter 4 is drawn to the flexibility of achieving different rates with
a subclass of LDPCC codes which are referred to as regular LDPCC codes. This
specific type has the unique property that its structure is very homogeneous and
additionally it can be proven that these codes achieve the Shannon limit. The key
question is if one has to deviate from these code constructions or if every rate in
the interval R ∈ [0, 1] can be achieved with reasonable complexity and performance.
The second part of the chapter introduces a slight irregularity to achieve the afore-
mentioned goal and a detailed assessment of the tradeoff between performance and
complexity is given. The results within this chapter are partly based on [NFL14].

• Chapter 5 is adding an additional constraint to the construction of LDPCC codes
for different rates in the form of rate-compatibility. We introduce a generic model for
rate-compatible LDPC codes based on multi-edge type ensembles. Different options
for connectivity as well as different degrees for subsequent redundancy steps are
discussed and their constructive issues as well as the trade-off in performance and
decoding complexity are discussed for the case of LDPC block as well as LDPCC
codes. The chapter ends with an additional introduction of a more generalized en-
semble that is capable of fine granularly set the desired rates while ensuring good
performance and low decoding complexity. The results within this chapter are partly
based on [NLF12].

• Chapter 6 summarizes the key findings of this thesis and gives an outlook on further
research topics.

Each chapter focuses on a specific topic. Contributions and related literature are covered
on the beginning of each individual chapter.



Chapter 2

Fundamentals

2.1 Objectives

The fundamental analysis of channel code constructions relies on certain assumptions and
methods that will be shortly introduced within this chapter. The chapter is organized as
follows.

• Section 2.2 is related to the fundamental communication scenario that all investiga-
tions are based on. As the channel model is crucial for the performance of the code
designs, specific emphasis is put onto the characterization of two channel models
used throughout the thesis.

• The fundamental performance limit used to compare different code constructions is
the channel capacity and will be introduced in Section 2.3.

• The core of the work within this thesis is related to the analysis of LDPC codes.
Therefore, Section 2.4 gives introduction and definition of different ensembles that
will be used throughout the thesis.

• Besides the performance of a code, its complexity and especially the decoding com-
plexity is of utmost importance. LDPC codes are typically decoded with belief
propagation (BP) decoders and therefore a discussion on the complexity metric of
this decoder that is used throughout the thesis is given in Section 2.5.

• To assess the performance of different code constructions a method called density
evolution (DE) is used within the thesis and shortly introduced in Section 2.6 for
the considered ensembles.

• The main concern of this thesis is the adaptation of code constructions for the use
with LDPCC codes. The principle of these codes and the remarkable performance
improvement is introduced in Section 2.7
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• The main focus of this thesis is the behavior of rate-flexibility and rate-compatibility
within the constructions of LDPCC codes. The basic notion of rate-compatibility
and IR is introduced in Section 2.8.

Finally, the key facts of this chapter are summarized in Section 2.9. As terms and defi-
nitions are given during the course of this chapter, the related literature is introduced in
the respective sections and given in a consolidated manner at the end of the chapter.

2.2 Channel Models

We assume a source that produces a vector D of information bits D ∈ {0, 1} with length
k and a channel encoder which generates a codeword X of length n denoted by X =
{X1, . . . , Xt, . . . , Xn}. The codeword is transmitted over the channel and received in a
perturbed version as Y = {Y1, . . . , Yt, . . . , Yn}, which is then decoded by the channel
decoder to yield an estimate X̂ of the sent codeword. The simplistic communication model
for this channel is shown in Figure 2.1. The investigations in this thesis focus on binary

Source Encoder Channel Decoder Sink
D X Y X̂

Figure 2.1: Simple communication model as derived in [Sha48]

memoryless symmetric (BMS) channels. In particular, we focus on the binary erasure
channel (BEC) as well as the binary-input additive white Gaussian noise (BIAWGN)
channel. The input to the channel is denoted by the random variable X which can take
values from the alphabet X = {±1}. The output of a BMS is described by the random
variable Y with Y ∈ Y . The alphabet Y can either be discrete or continuous as well
as finite or infinite. Channel input and output at time t are referred to as Xt and Yt,
respectively. We consider only memoryless channels which are defined as follows.

Definition 2.1 (Memoryless Channels [RU08]). A channel, characterized by its transition
probability pY |X(y|x) is said to be memoryless if

pY |X(y|x) =
∏

t

pYt|Xt(yt|xt) (2.1)

In the following, we shortly introduce the two channel models used throughout the thesis.

2.2.1 Binary Erasure Channel

The binary erasure channel (BEC) was introduced in 1954 as a toy example by Peter
Elias [Eli54]. It is a remarkably simple but non-trivial model for a channel. The BEC
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models a channel, where information bits are either received correctly or in error. While
in the second case, information is completely lost, one can be sure to have received the bit
correctly in the first case. Additionally, the occurence of an error is known to the receiver
in this channel model. The input alphabet for this channel is binary, X = {±1}, while
the output alphabet is given by Y = {±1, ?}. Every transmitted bit is either received
correctly with probability 1− ε or erased with probability ε. A BEC is fully characterized
by the erasure probability ε and can be visualized as depicted in Figure 2.2a.

−1 −1

+1 +1

?

1-ε

1-ε

ε

ε

Xt Yt

(a) BEC

Xt

Zt

Yt+

(b) BIAWGN channel

Figure 2.2: BMS channel models

2.2.2 Binary Input Additive White Gaussian Noise Channel

The BIAWGN channel uses a binary input alphabet X = {±1}. Its output is defined by
the discrete time channel model

Yt = Xt + Zt (2.2)

The additional noise term Zt is additive white Gaussian noise (AWGN) with zero mean
and variance σ2, i.e., Zi ∼ N (0, σ2). Typically, the channel quality of the BIAWGN
channel is parameterized with σ. A similar parameter is the energy per transmitted bit
Ec to the noise energy σ2. As we consider coded transmission throughout the thesis, we
use the parameter of energy per information bit Eb = Ec/R that is normalized to the
code rate. Finally, we get Eb/N0 = Ec/(2Rσ2) with N0 = 2σ2.

2.3 Channel Capacity

Shannon’s work asserts the existence of a fundamental transmission limit for every type
of channel. We shortly reconsider its definition. The channel has input X with probability
distribution p(X) and channel output Y with probability distribution p(Y ). Following
the notation in [CT06] the mutual information of a channel with input X, output Y and
transition probability p(Y |X) is defined as

I(X;Y ) = H(Y )−H(Y |X) (2.3)

where H(Y ) = E {− ln(P (Y ))} is the entropy of the channel output and H(Y |X) =
E {− ln(P (Y |X))} is the conditional entropy of Y given X.
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Definition 2.2 (Channel Capacity). The capacity of a channel with input X, output Y
and transition probability p(y|x) is defined as

C = max
{p(X)}

I(X;Y ) (2.4)

which is the maximum mutual information, where the maximum is taken over the set of
all input probability distributions p(X).

Shannon’s channel coding theorem [Sha48] asserts, that transmission of information is
possible at any rate R < C with vanishing bit error probability Pb. In the case of BEC,
the capacity can be calculated relatively simple as

CBEC = 1− ε (2.5)

with ε being the erasure probability of the channel. In case of the BIAWGN channel, the
capacity is given by [Fri96]

CAWGN = 1
2
√

2π

∞∫

−∞
e−(z−v)2/2 log2

2
1 + e−2zv + e−(z+v)2/2 log2

2
1 + e2zv dz (2.6)

with v =
√

2REb/N0. The definition of Shannon’s channel capacity gives rise to an asymp-
totic examination of the performance of a communication system. The highest rate, pos-
sible to communicate information is the channel capacity so if we set R = C, we can
calculate threshold values εSh and Eb/N

Sh
0 according to (2.5) and (2.6). These are the

ultimate channel quality parameters where we can communicate at rate R and are called
Shannon limit. The Shannon limit for the BEC and BIAWGN channel are depicted in
Figure 2.3.

2.4 LDPC Codes

LDPC codes belong to the class of linear block codes and were invented by Gallager
in 1963 [Gal63]. Since then they completely disappeared until there re-exploration in
[MN95] when the Shannon-limit approaching performance could be shown and LDPC
codes could compete with Turbo Codes. We will introduce regular LDPC codes first as a
general example and elaborate on further more advanced code classes afterwards.

A linear block code can be defined by a parity-check matrix H. Given a code of length n,
a vector v = (v0, . . . , vn−1) is a codeword if and only if vHT = 0.

Definition 2.3 (LDPC and regular LDPC block codes [Len03]). A binary block code of
length n, defined by an m × n parity check matrix H, with m < n is an LDPC code if
rows hi of HT are sparse, i.e.

wh(hi)� m , i = 0, . . . , n− 1 (2.7)
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Figure 2.3: Shannon limit for BEC and BIAWGN channel. Shaded areas represent achiev-
able regions for both cases.

where wh(·) denotes the Hamming weight [Fri96, Def. 1.7] of a given binary vector. Fur-
thermore, if the parity-check matrix of an LDPC block code is restricted to have J ones
in each column and K ones in each row of H, the LDPC block code is called a regular
(J,K) LDPC block code.

Given the above definition of a regular LDPC code, its design rate R is then defined as

R ≥ 1− J

K
. (2.8)

An LDPC code can be represented in different ways. While one is the parity-check matrix,
the code can also be defined by a Tanner graph [Tan81]. A Tanner graph is a bipartite
graph G = {V , C, E} that consists of a set V of variable nodes, a set C of check nodes
and a set E of edges connecting variable and check nodes from V and C, respectively. An
instance of a (3, 4)-regular LDPC code with length n = 12 is depicted in both variants
in Figure 2.4. Variable nodes (depicted by the black circles at the bottom of the Tanner
graph) correspond to columns in the parity check matrix and check nodes correspond to
rows. The edges in the Tanner graph are connected according to the positions of the one’s
in the parity check matrix. As an example, a one in column one and row five connects
variable node one with check node five (as depicted with dashed lines in Figure 2.4).

Ensembles and Finite Length Performance

To analyze the behavior of LDPC codes, we use the notion of ensembles of LDPC codes.
These ensembles can be analyzed more easily and give and insight into the general behavior
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(a) Parity-check matrix

(b) Tanner graph

Figure 2.4: Typical representations of an LDPC code

of a class of LDPC codes rather than one specific instance. In [RU01b] and [LMSS98] the
notion of a code ensemble was introduced. We follow this approach as we are not interested
in the performance of a particular code but the performance of an ensemble of codes where
every code in the ensemble is characterized by the specific ensemble definition. A regular
(J,K) LDPC code ensemble then consists of all parity-check matrices with a column
weight of J and a row weight of K. Similarly this explanation of a code ensemble as the
set of all codes that have the same characteristic according to the ensemble definition holds
also for the ensemble definitions used throughout the thesis and introduced shortly. The
great advantage of the investigations on code ensembles is that the average performance
of codes in the ensemble can be calculated explicitly with the numerical method of DE.
In [RU01b] we also find evidence, that if a code is drawn randomly from a code ensemble,
its performance is close to the average performance of the ensemble. We stick to the
performance assessment of code ensembles within this thesis and only occasionally show
the performance of a particular code.

This finite length performance of a particular code with block length n can be described
by two phenomena which can be observed when examining the bit error probability. On
one hand, the waterfall region shows how close a code performs to Shannon limit. On the
other hand, every code exhibits an error floor in the bit error rate curve. It is of great
importance for a code designer to achieve a performance close to optimal Shannon limit
as well as a very low error floor. It turns out, that getting good performance on both ends
of the bit error rate plot is a hard task.



2.4 LDPC Codes 11

Irregular ensembles

In contrast to regular LDPC code ensembles irregular LDPC code ensembles allow for
more than one degree at variable and check node side. The notion of irregular LDPC
ensembles was in depth investigated in [LMSS01a] [LMSS01b] [RU01b] [RSU01]. To ac-
commodate for the different degrees on check and variable node side, irregular LDPC code
ensembles are defined with degree distributions for check and variable node perspective.
The degree distributions α(x) for variable nodes and γ(x) for check nodes are defined as

α(x) =
∑

i∈J
αix

Ji (2.9)

γ(x) =
∑

i∈K
γix

Ki (2.10)

where J (K) denote the set of different variable (check) node degrees, and αi (γi) refers to
the fraction of variable (check) node of degree i. In the further analysis of irregular LDPC
codes it is of advantage to also define degree distributions from an edge perspective.

λ(x) =
∑

i∈J
λix

Ji−1 (2.11)

ρ(x) =
∑

i∈K
ρix

Ki−1 (2.12)

where λi (ρi) denote the fraction of edges connected to variable (check) nodes of degree i.
While the node perspective is convenient when looking onto the construction of specific
code ensembles, the edge perspective simplifies the performance evaluation of specific
ensembles significantly. For detailed conversion rules between these two definitions, the
reader may refer to [RU08].

Example 2.1 (Irregular LDPC code ensemble). Interpreting the Tanner graph in Figure
2.5a as an irregular LDPC ensemble, the degree distributions from a node perspective are
given as

α(x) = 1/3x3 + 1/3x2 + 1/3x
γ(x) = x3

The introduction of irregular degree distributions did allow the optimization of code en-
sembles for performance close to the Shannon limit. In [RSU01] and [CFRU01], the authors
constructed irregular LDPC code ensembles that perform very close to Shannon limit for
the BEC as well as the BIAWGN channel. To yield an irregular LDPC code ensemble for
a given rate, the structure of the degree distributions was fixed. As the parameter space
of the degree distributions form a convex polytope, a linear programming optimization
problem can be formulated to find specific degree distributions with good properties. The
structure of degree distributions was fixed in such a way, that the degree distributions on
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the check node side were only allowed to have two adjacent degrees, i.e. check concen-
trated degree distributions. The variable node side on the other hand is only constrained
to have a maximum degree. Interestingly with increasing maximum variable node degree
the performance gets closer to Shannon limit but to approach this limit, a non-vanishing
amount of degree-2 variable nodes is also needed. This gives rise to another problem which
we briefly explain as follows.

As mentioned before, the performance of a code depends, amongst others, on the behavior
in the error floor region. This behavior is strongly connected to the distance properties of
a code ensemble. If the minimum distance [Fri96, Def. 1.8] grows linearly with the block
length n, the code exhibits very low error floors. On the other hand, if distance grows only
sub-linearly or logarithmically the error floor is expected to be high and will disturb the
performance of an application designed for specific bit error rate regions. In [DRU06], the
authors showed that for irregular LDPC code ensembles, the distance growth is directly
connected to the degree distributions and especially to the amount of degree-2 variable
nodes. Nevertheless, allowing for a specific amount of degree-2 variable nodes was still
possible as long as the stability condition is satisfied. The stability condition is given in
the following definition.

Definition 2.4. Stability Condition [DRU06, Theorem 1] Given an irregular LDPC code
ensemble with associated degree distribution pair (λ(x), ρ(x)), if the condition

λ′(0)ρ′(1) < 1 (2.13)

is satisfied, then the minimum distance of the code ensemble grows linearly with probability
at least 1− ln 1√

1−λ′(0)ρ′(1)
.

Interestingly, a fixed fraction of degree two variable nodes can lead to very good perfor-
mance due to a good threshold but one has to carefully design the degree distribution to
not jeopardize the linear distance growth. Allowing an irregular LDPC ensemble to only
have variable node degrees J ≥ 3 yields λ′(0)ρ′(1) = 0 and therefore ensures liner distance
growth with probability 1. The benefit of defining an irregular LDPC ensemble via its
degree distribution is the simplification of the asymptotic analysis.

Protograph Ensembles

To simplify the design and implementation of LDPC code ensembles while still retaining a
tractable analysis, the emphasis went on to the construction of smaller matrices or graph
prototypes that later can be expanded to a full parity-check matrix [RL09]. These code
designs were first introduced in [Tho03] and are called protographs.

A protograph is a small graph CB that can be used to obtain a larger graph by a copy-and-
permute procedure. The protograph is copied Q times to obtain Q replicas of each check
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(a) Protograph (b) Lifted Protograph with Q = 3

Figure 2.5: A protograph and one instance of a corresponding parity-check matrix with
lifting factor Q = 3. Note that the permutations in the lifted protograph are assigned
to each edge (double edges get a permutation per edge) and permutations can vary from
edge to edge.

and variable node as well as Q replicas of each edge. Then edges are permuted between
the different replicas of the nodes but only in a way that they still are connected to a
replica of the node it was originally connected to in the protograph. This ensures that the
degree profile of check and variable nodes remains the same as in the original protograph.

A protograph is defined as a bipartite graph CB = {V , C, E} with a set V of Np variable
nodes, a set C of Mp variable nodes and a set E of edges connecting the nodes from V and
C. The rate of a protograph is defined as R = 1−Mp/Np. Also parallel edges between two
nodes are allowed. Using the above described copy-and-permute procedure with Q copies,
we can obtain a parity-check matrix of dimension m × n with n = QNp and m = QMp.
The edge permutations can also be modelled with a permutation matrix ΠQ×Q of size
Q × Q. Note that the edge permutations can be done in different ways that might be
beneficial for implementation and can be incorporated in the analysis and construction.
Within the thesis, we consider random permutations of size Q × Q although from an
implementation perspective, circulants of size Q×Q are preferable as they allow for easy
parallelization of the decoding algorithm. The random permutations are used to justify
the random ensemble definition for the analysis with DE. Similar to a Tanner graph, the
protograph can also be represented by a matrix, the so called base matrix B. Elements
of the base matrix are assigned similar to the Tanner graph but with the addition that
parallel edges in the protograph lead to integer elements greater than one.

Example 2.2 (Protograph of rate R = 1/3). The protograph depicted in Figure 2.5
consists of Np = 3 variable nodes and Mp = 2 check nodes and has therefore a design rate
of R = 1/3. The figure also shows how permutations are assigned to the different edges.
The base matrix is given as

B =

2 0 1

1 1 1


 (2.14)
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Multi-edge Type Ensembles

The protograph ensembles have some limitations, e.g. when considering different numbers
of variable nodes after lifting per variable node in the protograph. Such unequal lifting
factors cannot be treated with the concept of protographs so a more generalized ensemble
description was introduced in [RU02] and also discussed in [RU08]. While in the irregular
ensemble definition the connectivity is only constrained by the node degrees, the multi-
edge type (MET) ensembles define several edge classes. Every node in the graph is then
defined by the number of sockets with which it connects to a specific edge class. An edge
does only connect sockets of the same class. We slightly alter the notation in [RU08] for
the general definition of MET ensembles.
A MET ensemble consists of me different edge types. A degree type of a check node is
a vector of integers of length me. The i-th entry of this vector represents the number of
sockets that are connected to edge type i. The degree type of a variable node consists
of two parts. A length me vector fulfills the same purpose as on the check degree side.
Additionally, variable nodes are related to the respective channel on which the codeword
is transmitted. Therefore, we define a received distribution as a length mr + 1 vector. We
can now assign a BMS channel to each i, i = 1, . . . ,mr. The channel for i = 0 is used for
punctured bits and therefore the associated channel is a BEC. The representation of the
graph structure is done via a multinomial representation. We assume d = (d1, . . . , dme) to
be a MET degree and let x = (x1, . . . , xme) be a vector of variables. We use xd to denote
∏me
i=1 x

di
i . Additionally, let b = (b0, . . . , bmr) be a received degree and r = (r0, . . . , rmr) the

corresponding vector of received variables. Typically, for received degrees only one entry
is set to 1 and the rest is set to 0. With these definitions the MET ensemble is defined by
the two multinomials

ν(r, x) =
∑

νb,dr
bxd (2.15)

µ(x) =
∑

µdx
d (2.16)

with νb,d and µd being nonnegative reals. Assuming a block length n, the quantity nνb,d
represents the number of variable nodes of degree type b, d. Similarly, nµd is the number
of check nodes of degree type d. Additionally, we define

νri(r, x) = dν(r, x)
dri

, νxi(r, x) = dν(r, x)
dxi

, µxi(x) = dµ(x)
dxi

. (2.17)

To ensure that socket numbers for each edge type on check and variable node side are
equal, we constrain the socket count for each edge type with

νxi(1, 1) = µxi(1), i = 1, . . . ,me. (2.18)

Additionally, the received sockets also have to be constrained but as we consider only
transmission over one similar channel for all variable nodes, the constraint reduces to
νri(1, 1) = 1. The design rate of a MET ensemble is defined as

R = ν(1, 1)− µ(1). (2.19)
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Figure 2.6: Interpretations of an exemplary graph structure with different ensemble de-
scriptions.

Consider now an arbitrary enumeration of sockets on both variable and check node side
with the total number of sockets s = s1 + s2 + · · ·+ sme , where si is the number of sockets
of edge type i. By connecting socket i to socket Pi(i) with a permutation Π on s letters
we can define a particular graph. If we further restrict that i and Π(i) have to be of the
same type the permutation can be decomposed into me permutations Π = (Πi, . . . ,Πme).
The MET ensemble is then defined by viewing Πi as a random variable that is distributed
uniformly over all permutations on si elements.

Remark 2.1 (MET multinomials without received degree). Within the thesis, we only
consider the transmission of bits over the same channel and do not consider any punctured
bits. As the multinomial representations especially in Chapter 5 are relatively complex, we
simplify the notation. Therefore we omit the receive degree r in ν(r, x) which simplifies the
notation tremendously to ν(x). Note that for DE, the received degree r1 for the channel
has to be multiplied to the multinomial for proper DE calculation as

ν(r, x) = r1ν(x). (2.20)

Example 2.3 (MET ensemble). Taking the graph structure from Figure 2.5a and assign
three different edge-types as depicted in Figure 2.6c, we get the multinomial expression as

ν(x) = ν1x
2
1x3 + ν2x3 + ν3x2x3 (2.21)

µ(x) = µ1x
2
1x3 + µ2x

3
2 (2.22)

Example 2.4 (Protograph ensemble from Figure 2.5a as MET ensemble). Taking the
graph structure from Figure 2.5a and assume the graph to be a protograph with base matrix
given by (2.14), we assign an edge-type per edge in the protograph, shown in Figure 2.6b.
The associated MET multinomials are given as

ν(x) = ν1x1x2x4 + ν2x5 + ν3x3x6 (2.23)
µ(x) = µ1x1x2x3 + µ2x4x5x6 (2.24)

Example 2.5 (Irregular ensemble constructed from Figure 2.5a as MET ensemble). Tak-
ing the graph structure from Figure 2.5a and assume the graph to be an irregular LDPC
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ensemble description, we only assign one edge-type to all edges as depicted in Figure 2.6a.
We get the following multinomials

ν(x) = ν1x
3
1 + ν2x1 + ν3x

2
1 (2.25)

µ(x) = µ1x
3
1 + µ2x

3
1 = (µ1 + µ2)x3

1 (2.26)

It turns out, that this ensemble is an irregular LDPC ensemble with check regular degree
distribution.

To obtain the coefficients, for the above mentioned examples, one has to solve a linear
equation system given by the socket constraints in (2.17) and the additional constraint
∑
i νi = 1. Depending on the number of edge-types and coefficients, this equation system

can be overdetermined, underdetermined or uniquely solvable. In the first case, a solution
does not necessarily exist. The ensemble then does not yield a usable configuration. In the
underdetermined case, an infinite number of solutions for the coefficients exist. This can be
overcome by introducing additional constraints, e.g., to define a specific design rate for the
given degree profile. If the system is uniquely solvable, only one configuration of degrees
and coefficients is usable and the design rate of this ensemble is then a consequence of
these degree profiles. Additional to the different cases mentioned above, negative solutions
for coefficients also have to be avoided as these do not have any physical interpretation
for the MET ensemble.

Unstructured and Structured Ensembles

The ensemble definitions described above generally fall into two different categories. Reg-
ular (J,K) LDPC code ensembles and irregular (λ(x), ρ(x)) LDPC code ensembles are
unstructured ensemble definitions. Protograph and, to a certain extend, multi-edge type
LDPC ensembles refer to structured ensembles.

The unstructured ensembles are characterized by a random construction of the parity-
check matrices. A parity-check matrix drawn from this ensemble has no specific structure
and only reassembles the degree distribution of the ensemble definition. The main dis-
advantage of these ensemble definitions is that a decoder implementation cannot benefit
from simplifications of, e.g., storage of the parity-check matrix. On the other hand, these
ensembles are important for the general analysis of LDPC ensembles as their simplistic
definitions allow for a simple analysis of their performance.

The structured ensembles do overcome this disadvantage by imposing a desired structure
onto the parity-check matrix. Protograph LDPC codes are a prominent example for such
ensemble definitions. The incorporation of structure in the parity-check matrix does not
neglect use of irregular degrees within the parity-check matrix and in fact, many standards
use protograph ensembles that have a specific structure and assemble an overall irregular
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Figure 2.7: Visualization of the computations on variable (filled circle) and check (empty
circle) node side for a BP decoding algorithm

parity-check matrix. The implementation of a decoder can then make use of the structure
which results in a reduction of memory requirements and the support of other decoder
architectures. Even parallel processing of decoder iterations is possible.

MET ensembles have a more general notion as they combine the idea of structured and
unstructured ensembles. The introduction of different edge classes induces a given overall
structure of the parity-check matrix but within one edge class, we still have the freedom
of using irregular degree distributions.

2.5 Belief Propagation Decoder and its Decoding
Complexity

While encoding of a codeword is usually very simple to implement [RU01a] the decoder
is of utmost importance to be optimized for low implementation complexity. The typical
decoder algorithm used for decoding of LDPC codes is the BP decoder [Gal63, Pea88].
Although its sub-optimality, this iterative decoding approach yields very good perfor-
mance. In the following, we shall briefly explain the notion behind this message-passing
algorithm and state the definition of decoding complexity that is used throughout the
thesis for further evaluation. All simulations and discussions are based on the original
sum-product algorithm by Gallager [Gal63]. Further simplifications for implementation
are widely discussed but not directly connected to the construction of codes.

The decoding is based on the exchange of messages between the connected check and
variable nodes in the Tanner graph. An output message on an edge is calculated on basis
of the other incoming messages connected to the respective node the edge is emanating
from. The principal behavior for check and variable nodes is depicted in Figure 2.7. The
functionals for calculation can be separated in one type on the variable node side and one
type on the check node side which always are functions of the messages on edges that are
attached to the same node. We define two functionals to calculate a new message mi for
edge i as

mi = f
(mi)
V (m1, . . . ,mi−1,mi+1, . . . , J) (2.27)

mi = f
(mi)
C (m1, . . . ,mi−1,mi+1, . . . , K) (2.28)
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where f (mi)
V denotes a variable node update and f (mi)

V denotes a check update.

Example 2.6 (Gallagers sum product algorithm [Gal63]). For the original sum-product
algorithm introduced in [Gal63] the functionals for node updates and final decoding oper-
ation are given as

f
(mi)
V = mc +

∑

j 6=i
mj (2.29)

f
(mi)
C = 2 tanh−1


∏

j 6=i
tanh

(1
2mj

)
 (2.30)

with mc denoting the input message from the channel.

Using this abstract notion of a functional for decoding mechanisms within a message
passing decoder, we assign a complexity metric to the computation of the variable node
functional in the following definition

Definition 2.5 (Unit of complexity). The atomic unit for complexity is normalized to
the computation of one functional on the variable node side and is defined as

C(f (mi)
V ) = 1 (2.31)

where we assume that the computation of an outgoing message from a variable node has
single unit computational complexity.

As this states the complexity of a single message computation, the complexity for a
complete update of a variable node consisting of J edges (which in the Tanner graph
denotes one bit of the codeword) within one iteration is given as

C(Jf (mi)
V ) = J. (2.32)

Counting for the overall number of variable nodes n in the Tanner graph and the respective
iterations I we get an overall decoding complexity as

C = n · I · C(Jf (mi)
V ) = n · I · J. (2.33)

As in the remainder of the thesis, the investigations are of asymptotic nature assuming
infinite iterations, we normalize the complexity to one iteration. Additionally, to decouple
the complexity metric from the respective rate of a specific codeword, we normalize the
given complexity metric to the number of information bits k and yield the final complexity
expression as

C = n · I · J
I · k = J

R
(2.34)

with the code rate R = k/n. With this, we decouple the implementation complexity
from the specific decoding algorithm and therefore can later on draw conclusions on the
computational complexity of LDPC ensembles based on their constructional properties
only. The metric for complexity, derived and used within this thesis is motivated by
[MCFF10].
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2.6 Density Evolution

To analyze the iterative decoding performance of certain ensembles of codes such as
irregular, protograph or MET ensembles under BP decoding, we shortly describe the
method of DE which is the crucial analysis tool for the thesis. This method was first
introduced in [LMSS98] and later refined for general channels in [RU01b]. For illustrative
purposes we stick to the presentation in [RU08]. The messages to be exchanged in the
BP algorithm are log-likelihood ratios (LLRs) which we define as follows. Given a BMS
channel as in Definition 2.1 with transition probability pY |X(y|x), the associated LLR
function L(y) is given by

L(y) = ln pY |X(y|1)
pY |X(y| − 1) (2.35)

which has an associated LLR L = L(y) for the random variable Y . As the LLR L itself is
a random variable, its probabilistic properties are fully defined by a density a which we
relate to as an L-density. Assuming now, we have two observations Y1 and Y2 resulting
from transmission of X over two independent channels and associated LLRs L1 and L2.
Then it can be shown, that the LLR of the joint random variable (Y1, Y2) is given as
L1 +L2. If a1 and a2 are the associated L-densities then the L-density of (Y1, Y2) is simply
the convolution of the individual densities as a1 � a2. The operational meaning of this
convolution is in fact the behavior how densities of LLRs are combined on variable nodes.

A similar observation can be made for the nodes on check node side. We first define the
hard-decision function as

H(x) =





+1 if x > 0
+1 with probability 1

2 if x = 0
−1 with probability 1

2 if x = 0
−1 if x < 0

(2.36)

With this definition we can define another quantity as

g(y) = (H(l(y)), ln coth(|L(y)|/2)) (2.37)

with associated random variable G = g(Y ). The density of G is denoted by b. As g(y)
takes values in {±1} × [0,+∞] the G-density b(s, x) has the form

b(s, x) = 1s=1b(1, x) + 1s=−1b(−1, x). (2.38)

where 1x is the indicator function. As G-densities are defined over the product of R+ and
{±1} the convolution of these densities is two dimensional over the group F2 × [0,+∞].
We denote this convolution by the symbol � and refer to it as the convolution in the
check node domain. As mentioned before, the two major channel models considered in
this thesis are the BEC and the BIAWGN channel. The associated L-densities for these
two channels are given as follows.
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Definition 2.6 (L-density for BEC). Given a BEC with erasure probability ε, the input
alphabet to be {±1} and assuming that X = 1 was send, the L-density is given as

aBEC(y) = ε∆0(y) + (1− ε)∆+∞(y) (2.39)

with ∆0(y) and ∆+∞(y) being point masses at zero and infinity respectively.

Definition 2.7 (L-density for BIAWGN). Given a BIAWGN channel with standard de-
viation σ, the corresponding L-density is given as

aAWGN(y) =
√
σ2

8πe
−

(y− 2
σ2 )2σ2

8 (2.40)

We now illustrate the process of DE with the example of regular LDPC codes. Consider
first the actions on the variable node side as already illustrated in Figure 2.7. While the
BP algorithm for decoding is concerned with the computation and exchange of LLRs,
the asymptotic analysis of DE assumes an infinite block length and number of iterations
which mathematically can be treated with the exchange of corresponding L-densities. We
therefore now assume that edges emit not LLRs but their corresponding densities. In
this respect we move from the analysis of a specific code to the analysis of an ensemble
of codes. Assuming a (J,K) regular LDPC code, we have variable nodes with J edges
attached. Let x(l) denote the L-density emitted from a variable node at iteration l. As the
LLRs on variable nodes simply add up, the respective L-densities convolve. We therefore
can state the outgoing L-density x(l+1) at iteration l + 1 as

x(l+1) = c �
(
y(l)
)�(J−1)

(2.41)

where the exponent stems from the fact that due to the regular degrees, we sum up equal
LLRs resulting in a convolution of the same densities. Note that L-density c corresponds
to the L-density contributed by the channel. For the check nodes the LLRs are not simply
summed up but combined according to (2.30). It turns out (details can be found in
[RU08]), that the combination of LLRs at check node side results in a convolution of L-
densities in the check node domain, denoted by the convolutional operator �. With this
observation, the update of densities y(l) at check node side in iteration l can be given as

y(l) =
(
x(l)
)�(K−1)

(2.42)

Putting together (2.41) and (2.42), the definition of DE is given as follows.

Definition 2.8 (DE for regular (J,K) LDPC code ensembles). Given a BMS channel
with L-density cBMS, the evolution of L-densities x(l) on the variable node side of a regular
(J,K) LDPC code ensembles at iteration l is defined by

x(l+1) = cBMS �
((

x(l)
)�(K−1)

)�(J−1)
(2.43)

with x(0) = cBMS.
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In the same manner, the evolution of densities for an irregular LDPC code ensemble with
degree distributions (λ(x), ρ(x)) is given as follows.

Definition 2.9 (DE for an irregular (λ(x), ρ(x)) LDPC code ensemble). Given a BMS
channel with L-density cBMS, the evolution of L-densities x(l) on the variable node side of
an irregular LDPC code ensemble with degree distributions (λ(x), ρ(x)) at iteration l is
defined by

x(l+1) = cBMS � λ
(
ρ
(
x(l)
))

(2.44)

where λ(x) =
Jmax∑
i=2

λix�i−1 and ρ(x) =
Kmax∑
i=2

ρix�i−1.

Similarly, we can give the DE update equation for a generic MET ensemble defined by
multinomials ν(x) and µ(x). To state the recursive equation in a simple way, we first
introduce the vector multinomial representation from an edge perspective as follows.

Definition 2.10 (Vector multinomials from an edge perspective). Given a MET ensemble
with me edge-types and multinomials ν(x) and µ(x) from a node perspective, the associated
vector multinomials from an edge perspective are given as

λ(x) =
(
νx1(x)
νx1(1) ,

νx2(x)
νx2(1) , . . . ,

νxme (x)
νxme (1)

)
(2.45)

ρ(x) =
(
µx1(x)
µx1(1) ,

µx2(x)
µx2(1) , . . . ,

µxme (x)
µxme (1)

)
. (2.46)

for variable and check nodes, respectively.

Utilizing this multinomial representation we define DE for MET ensembles as follows.

Definition 2.11 (DE for MET LDPC ensembles). Consider a MET ensemble with asso-
ciated multinomials λ(x) and ρ(x). Further, consider transmission over a BMS channel
where cBMS denotes the L-density of received values. Note that, in simplification of the
general case, we assume the same BMS channel for every edge-type. Let a(l) denote the
vector of densities (As every edge type conveys one particular density we consider now
vectors of densities a = (a1, a2, . . . , ame)) passed from variable nodes to check nodes in
iteration l and assuming that a(0) = cBMS. Then for l ≥ 1, the recursive equation for DE
is given as

a(l) = cBMS � λ
(
ρ(a(l−1))

)
. (2.47)

Further, the density of the final decision of decoding at iteration l is given by aBMS �
ν
(
ρ(a(l))

)
.

As protograph ensembles can be easily modeled with the MET framework, we leave out
the derivation of the specific DE equation and refer the reader to [RU01b, Tho03]. While
the computational burden for the general case which includes the BIAWGN channel can
be lowered by methods described in Appendix B of [RU08], for the BEC the DE equations
break down to very simple recursions and we exemplary state the DE equation for the
BEC and regular LDPC code ensembles in the following.
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Definition 2.12 (DE for regular LDPC codes on BEC). We use the definitions of received
L-densities for the BEC from Definition 2.6. Let x(l) denote the probability of erasure at
variable node side in iteration l. Then the recursive DE equation for an (J,K) regular
LDPC code ensemble on the BEC with erasure probability ε is defined by

x(l) = ε
(

1−
(
1− x(l−1)

)K−1
)J−1

. (2.48)

As we are concerned with the asymptotic behavior of the ensemble, we can use DE to
determine channel parameters for which the remaining error probability approaches zero
and other channel parameters for which it is strictly bounded away from zero. The goal of
the analysis with DE is then to find the ultimate threshold ξBP (where "BP" denotes the
assumption of BP decoding) such that for ξ > ξBP, reliable transmission is not possible
as the remaining error probability is bounded away from zero and ξ ≤ ξBP for which error
probability always converges to zero. We formally state the definition of the so called
iterative decoding threshold ξBP in the following.

Definition 2.13 (Iterative decoding threshold). Let Pr(l)(ξ) denote the remaining error
probability after l iterations given a channel model that is characterized by a channel
parameter ξ which is ordered by degradation [RU08]. Then the iterative decoding threshold
ξBP is given as

ξBP = sup{ξ ∈ Ξ : Pr(l)(ξ)l→∞−−−−→0} (2.49)

where Ξ denotes the domain of ξ. For the BEC we have ξ = ε, ξBP = εBP and Ξ = [0, 1].
For BIAWGN, ξ = σ, ξBP = σBP and Ξ = R+. Equivalently, σBP can also be stated via
Eb/N

BP
0 .

2.7 LDPC Convolutional Codes

We shortly introduce the notion of LDPCC codes – also referred to as spatially-coupled
(SC) LDPC codes 1– as the remainder of the thesis will be concerned with performance
tradeoffs between coupled and uncoupled versions of differently constructed code ensem-
bles. For the sake of clarity of presentation, we point out the general idea with a coupled
system of regular LDPC code ensembles with the help of the ensemble definition from
[KRU11]. Nevertheless, the procedure of spatial coupling does easily extend to irregular,
MET and protograph ensembles. These extensions will be noted briefly for completeness.

We assume a sequence of L time instants indexed by a time index t ∈ [0, L − 1] with L
as the coupling length. At each time instant t, a (J,K) regular LDPC code ensemble with
nt variable nodes (code bits) and J

K
nt = mt check nodes is located. For the remainder of

the thesis, we assume nt to be constant for t ∈ [0, L− 1] as well as mt being constant for
1 Note that the terms SC LDPC codes and LDPCC codes refer to the same code ensemble description
but are equally used in literature. Within the thesis, we use both terms interchangeably.
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t t+ 1 t+ 2 t+ 3

w = 3

L = 4

Figure 2.8: Spatially-coupled code ensemble

the complete sequence. Currently, the sequence of codes (or codewords) is a sequence of
(J,K) block codes that do not interact with each other. As the idea of spatial coupling is
to interconnect block codes over different time instants, it remains to define how intercon-
nections between code ensembles at different time instants are chosen, i.e., how edges are
distributed over time instants. We assume that every of the J edges of all variable nodes
at time instant t is uniformly and independently connected to a check node in the range
{t, . . . , t+w− 1}, were w denotes the coupling width and is a measure of the strength of
coupling. Similar, every of the K edges of all check nodes at time instant t is connected
to a variable node in the range {t− w + 1, . . . , t}.
A graphical visualization of a coupled chain of block codes with w = 3 is shown in Figure
2.8. We refer to such an ensemble as a (J,K, L,w) LDPCC ensemble. Note that at position
t ∈ {L, . . . L + w − 2} we have to append additional check nodes as depicted in Figure
2.8 to ensure proper connection of all edges emanating from variable nodes at position
t ∈ {L− w, . . . , L− 1} to a check node according to the connection rule defined above.

Including the boundary conditions for the randomized connections, the rate of a SC LDPC
code ensemble is defined as follows.

Definition 2.14 (Rate of a (J,K, L,w) LDPCC ensemble). Given a (J,K, L,w) LDPCC
ensemble with coupling length L and coupling width w, the rate is given as

R = 1− J

K

L− w − 1 + 2∑w−1
i=0

(
1− (w−i−1

w
)K
)

L
. (2.50)

The overhanging check nodes at positions t ∈ {L, . . . L + w − 2}, unfortunately cause
a rate-loss that vanishes linearly with the increase of L. In the limit as L → ∞ we get
R = 1−J/K which is the design rate of the uncoupled underlying regular LDPC ensemble.
As we are most often concerned with very long coupled chains, the rate-loss is of minor
importance for the remainder of the thesis. Additionally, due to the randomized connection
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there is a remaining probability, that a check node in the range t ∈ {L, . . . L+ w − 2} is
not connected to a variable node resulting in a rate increase. The vanishing influence of
this effect with growing L gives rise to neglecting this behavior.
The irregular case is a straightforward generalization of the regular case where each edge
connection is similarly distributed over a given coupling length w. More details and a def-
inition of a (λ(x), ρ(x), L, w) LDPCC ensemble can be found in Section 4.3 and Definition
4.3. Similarly, the coupling procedure extends to the case of MET LDPCC ensembles.
The only constraint to be taken into account is that the randomized edge connections
are done per edge-type to ensure that an edge of type i emanating from a variable node
at time instant t can only be connected to a check node in the range [t, t + w − 1] that
accepts this edge type. Coupling of protograph ensembles is done in a similar way but
here edges are not spread randomly over the coupling width but in a controlled manner.
More details for this edge spreading procedure will be given in Section 5.2.
To assess the performance of a LDPCC code ensemble we introduce adapted DE equations
to account for the connections within the SC chain. We again give a introduction with
the help of a regular (J,K, L,w) LDPCC ensemble. Generalizations to irregular and MET
ensembles are shortly noted for completeness.
To account for the code ensembles at positions t ∈ [0, L−1] we define the density emitted
from variable nodes at time instant t in iteration l as x(l)

t . Similarly, the density emitted
from check nodes at position t is denoted as y(l)

t . Reconsider the DE recursion for regular
block codes as

x(l+1)
t = aBMS �

(
y(l)
t

)�(J−1)
(2.51)

with y(l)
t =

(
x(l)
t

)�(K−1)
. This is the case for an uncoupled system which we can refer

to as a coupled system with coupling width w = 1. As the coupling procedure starts to
connect code ensembles at different time instants t, the density evolution equations have
to account for the influence of densities of at time instants t′ 6= t to the densities at time
instant t. The coupling is done in a uniformly random fashion over a window of w time
instants. Therefore, the resulting density that needs to be incorporated in the calculations
at time instant t is simply an average of densities within the bespoken window of size w.
To clarify, which densities shall be taken for average at check and variable node side, we
define an average variable node density x̄(l)

t in iteration l as

x̄(l)
t = 1

w

w−1∑

k=0
x(l)
t−k (2.52)

and similarly the average density on the check node side ȳ(l)
t as

ȳ(l)
t = 1

w

w−1∑

j=0
y(l)
t+j. (2.53)

The average within these two quantities resembles exactly the SC connections from the
ensemble definition as can be seen by the indexes. The definition of the DE recursion for
a regular (J,K, L,w) LDPCC code ensemble is given in the following.
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Definition 2.15 (DE for a (J,K, L,w) LDPCC ensemble). Given a (J,K, L,w) LDPCC
ensemble, the density emitted by variable nodes in iteration l + 1 is given by

x(l+1)
t = c �


 1
w

w−1∑

j=0

(
1
w

w−1∑

k=0
x(l)
t−k+j

)�(K−1)


�(J−1)

(2.54)

with c as the L-density given by the respective channel.

In the above definition, we used the fact that

x(l+1)
t = c �

(
ȳ(l)
t

)�(J−1)
(2.55)

and
y(l)
t =

(
x̄(l)
t

)�(K−1)
(2.56)

together with (2.52) and (2.53).

The recursion can again be used to numerically calculate an iterative decoding threshold
ξBP for the coupled ensemble. Note again, that the uncoupled case of block code ensembles
is a special case of the coupled ensemble with w = 1.

The DE equations extend straightforward to the case for irregular and MET LDPCC
ensembles. For the irregular case, the general DE recursion is given in Lemma 4.3. For
the MET case we shortly state the DE recursion in form of a definition as follows.

Definition 2.16 (DE of a (ν(x), µ(x), L, w) LDPCC ensemble). Given a (ν(x), µ(x), L, w)
LDPCC ensemble with coupling width w and coupling length L, the vector x(l)

t =
(x(l)
t,1, x(l)

t,2, . . . , x(l)
t,me) represents the densities emitted from variable nodes at time instant

t where x(l)
t,i denotes the density emitted from variable nodes of edge type i at time instant

t in iteration l. With the slightly generalized definition of (2.52) and (2.53) given as

x̄(l)
t = 1

w

w−1∑

k=0
x(l)
t−k (2.57)

and
ȳ(l)
t

= 1
w

w−1∑

j=0
y(l)
t+j (2.58)

the recursion for x(l)
t is given as

x(l+1)
t = c � λ


 1
w

w−1∑

j=0
ρ

(
1
w

w−1∑

k=0
x(l)
t−k+j

)
 (2.59)

with λ(x) and ρ(x) from Definition 2.10.

The complexity of an LDPCC code ensemble does not differ from the complexity of
LDPC code ensemble with same degrees and sufficiently large coupling length L as the
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asymptotically, the variable degree distribution of uncoupled and coupled code ensembles
are converging. Of interest for the complexity of LDPCC code ensembles is the coupling
width which directly influences the window size of a possible windowed BP decoding
algorithm. In general, the smaller the coupling width w, the smaller the window size can
be which is beneficial for decoder implementational complexity. We therefore always seek
for smallest coupling width.

Threshold saturation

Lentmaier et al. observed in [LF10] and [LSCZ10] that the iterative decoding thresholds
of SC LDPC ensembles numerically coincide with the optimal maximum likelihood (ML)
decoding threshold of the uncoupled LDPC ensemble. In [KRU11], the (J,K, L,w) en-
semble was constructed to analytically investigate these findings with a mathematically
tractable model. For the BEC it was shown that as

lim
w→∞ lim

L→∞
lim
nt→∞

R(J,K, L,w) = 1− J

K
(2.60)

which is the design rate of the underlying (J,K) LDPC block code ensemble. Additionally
and remarkably,

lim
w→∞ lim

L→∞
lim
nt→∞

εBP(J,K, L,w) = εMAP(J,K) (2.61)

where εMAP(J,K) is the maximum a-posteriori (MAP) threshold of the underlying (J,K)
LDPC block code ensemble. If the degrees (J,K) are increased while keeping the ratio
J/K constant to preserve the rate, the MAP threshold converges to the Shannon limit
εSh as

lim
J→∞

εMAP = εSh. (2.62)

This two step argumentation leads to the fact that for the BEC, the Shannon limit could
be achieved with regular (J,K) LDPCC codes even with a sub-optimal decoder. In fact,
the sub-optimal decoder in the uncoupled case becomes the optimal decoder in the coupled
case.

Extensions to general channels were made in [KRU13] and [NYPN12]. Remarkably, this
effect of threshold saturation through spatial coupling was shown to happen with a wide
variety of ensembles such as protograph and MET ensembles. The idea of a threshold
improvement through spatial coupling and its impact on low-complexity decoding is the
main theme of this thesis.

2.8 Incremental Redundancy

The term incremental redundancy (IR) nowadays is mostly correlated with the use of
HARQ protocols known from, e.g., LTE. Originally, two types of HARQ protocols were
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introduced. Type 1 HARQ was simply the transmission of information bits that were
encoded with a channel code C. If the receiver was not able to decode the codeword
a retransmission would be requested trough a feedback channel. The problem of Type
1 HARQ was the inefficiency in high signal-to-noise ratio (SNR) situations. With the
introduction of HARQ Type 2, IR was of utmost interest and first noted in [Man74]. Here
the general notion was to only send parity bits of a codeword to the receiver if the channel
quality was too bad to decode. The transmitter therefore subsequently sends IR packets
of parity bits to the receiver as long as the receiver does not acknowledge the successful
decoding. We give a rather simplistic definition of IR as follows.

Definition 2.17 (Incremental Redundancy). Separating a codeword from a code C of
length n into k bits representing the information to be transmitted (either systematic or
not) and n − k bits representing the parity (redundancy), IR is defined as the procedure
of dividing the n− k parity bits into subblocks of redundancy and, depending on its need,
supplying one or a combination of redundancy subblocks in a subsequent fashion to the
receiver (decoder). The cumulated bits at the receiver are then jointly used to decode the
information.

To support such a transmission scheme with IR, the channel code has to offer the capability
to be decoded by only a subset of received blocks. Already [Man74] gave an exemplary
construction of such a rate-compatible code design with Reed-Solomon Codes. In [Hag88],
a rate-compatible coding scheme based on convolutional codes was introduced which
showed significant gain to combat fading and increases throughput on Rayleigh fading
channels. The rate-compatible code constraint was introduced by Hagenauer [Hag88] as
follows.

Definition 2.18 (Rate-compatible constraint [Hag88]). All the code bits of a high rate
code are used by the lower rate codes; or in other words, the high rate codes are embedded
into the lower rate codes of the (rate-compatible) family.

We seek to find code constructions that support this constructive constraint. For the
convolutional codes in [Hag88], the technique of puncturing was introduced. A very low
rate mother code is used to encode a codeword. To get codewords of higher rate a specific
number of bits is simply masked (punctured) and not sent within the transmission of the
codeword. The remaining codeword consisting of the unmasked bits has higher rate. On
demand, the masked bits can be additionally send as IR for the decoder to be used. In
modern communication systems, puncturing is used in conjunction with the more powerful
Turbo Codes [BGT93]. The performance drawback of puncturing stems from the fact, that
the mother code (of low rate) is highly optimized for good performance but as soon as
the fraction of punctured bits increases (rate increases), the performance worsens. For
the IR protocols, this is a disadvantage as the first transmission will be one of high rate
and is therefore not as powerful as codewords at lower rates. An overcome to this issue,
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Figure 2.9: Parity-check matrix and Tanner graph representation of a rate-compatible
code build through extension

the exact counterpart to puncturing called extension, will be the focus of this thesis. The
procedure of extension starts with a high rate mother code C with associated parity-check
matrix H and Tanner graph G and subsequently appends rows and columns to H (check
and variable nodes in G) to generate new parity bits and lower the rate R. The structure
of H and G is shown in Figure 2.9.

We construct a family of rate-compatible codes {Ca}αa=1 where a denotes the index for the
specific IR step and α is the maximum number of members of the family and therefore
IR steps. The corresponding parity-check matrix Ha for a = 2, . . . , α is given as

Ha =

Ha−1 0
Ha,1 Ha,2


 (2.63)

withH1 as the parity-check matrix of the highest rate code. To support rate-compatibility,
the extension is always carried out in such a way to ensure an all zero matrix in the
upper right of the resulting parity check matrix. This is important as newly appended
columns (redundant bits) do not alter check equations of previous IR steps. This nested
structure can be rediscovered within the simplified Tanner graph visualization in Figure
2.9. At IR step a = 1 just one variable and one check node denote the initial code
(precode) with highest rate. Subsequent addition of check and variable nodes at each IR
step are the corresponding action to adding rows and columns in the parity-check matrix.
The rate-compatibility constraint that ensures the nested structure of the parity-check
matrices can be seen easily. While connections from check nodes at IR step a are allowed
to every variable node at IR step a′ ≤ a, variable nodes at step a are only allowed to have
connections to check nodes at a′ ≥ a.

Rateless Codes The class of rateless codes form a specific subgroup of rate-compatible
code constructions. These codes are characterized by a random approach to the creation
of parity bits for subsequent IR steps. Using a vector v of symbols (either binary or from
larger fields), a rateless encoded symbol ca at IR step a is generated as ca = f(v) where
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f(·) is a random function involving the use of a random number generator. The key to
a good performing rateless code is the design of the random function f(·) in a way, that
the decoding algorithm does decode the correct codeword with high probability. Due to
the random nature of the "on-the-fly" encoding, these code construction exhibit very good
performance when the block length is chosen sufficiently large. A popular version of these
rateless codes are Luby transform (LT) codes [Lub02], where the vector v consists directly
of the information symbols to be transmitted. Raptor codes [Sho06] are the second and
more important variant of rateless codes where the vector v is already encoded with an
LDPC code as a precode. These codes are shown to achieve the Shannon limit on the
BEC.

As rateless codes also produce IR, they possess the same principal structure as shown in
Figure 2.9. The only difference is in the choice of the parity-check matrix which is random
in every transmission for the rateless codes in contrast to the predetermined parity-check
matrix of LDPC codes.

2.9 Summary

This chapter shall be the basic collection and description of tools and methods to be
used throughout the rest of this thesis. In particular, the ultimate performance limit
of Shannon was introduced. In the subsequent chapters, all code constructions will be
compared against this limit. It is always of interest how close a specific code construction
approaches the Shannon limit. Further, the three different models to define LDPC code
ensembles are described, namely irregular, protograph based and MET LDPC ensembles.
The specific terminology in terms of protograph matrices and degree distributions is stated
based on different examples to visualize the differences and commonalities between these
different description methodologies. A short discussion clarifies why we are interested in
the analysis of ensembles instead of specific codes. The tool to analyze and compare the
performance against the Shannon limit is also introduced for all types of ensembles that
we use throughout the thesis. Finally, a short wrap up of the basics for the two main
ingredients of this thesis are discussed. The introduction of LDPCC codes as well as a
short explanation of IR and rate-compatible code constructions. These two topics describe
the main focus of this thesis and their interplay, issues and performance are the focus of
the following chapters.

2.10 Related Literature

The channel models considered in this thesis are rather simple but important ones taken
from coding and information theory. Their description together with extensive discussions
about their channel capacity can be found in various textbooks on information theory
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such as [CT06], [Gal68] and [Fri96]. An in depth introduction to LDPC codes can be
found in various books such as [RU08], [RL09] and [LC04]. The notion of irregular LDPC
ensembles together with the asymptotic analysis with DE was introduced in [LMSS98,
LMSS01a, LMSS01b]. The MET paradigm and model was in detail presented and analyzed
in [RU04] and additionally described in [RU08]. The BP algorithm was first introduced in
[Pea88] without any relation to the decoding of channel codes. The decoding algorithms
in Gallagers PhD thesis [Gal63] were shown to be instances of this algorithm. The direct
application of Pearls BP algorithm to decoding of LDPC codes was discussed in [MN95].
A specific decoding complexity metric for the BP decoder was introduced in [MCFF10]
for measuring the complexity only based on the code construction. The first mentioning
of LDPCC codes was given in [JFZ99]. A recent overview of the topic can be found in
[CDF+14]. The topic of IR was first introduced in [Man74] in conjunction with a concrete
coding scheme. Later, the term rate-compatibility was introduced for a specific code design
constraint for IR in [Hag88]. Rate-compatibility through puncturing for LDPCC codes was
investigated in [ZMGC13] but the investigations were not directed towards the general
iterative decoding behavior as only simulations of specific code constructions were shown.
Rate-compatible extension for LDPCC codes will be discussed in Section 5 for a literature
overview. SC LT codes were investigated in [AU11], were the robustness increasing effect of
spatial-coupling helps to get outstanding asymptotic performance on a variety of different
channel models. In [HXR12], the focus of the investigation was drawn to the different
options of SC precode and/or SC LT code. In [SKS13] and [SKS14] the authors gave the
analytical assessment to the capacity achieving behavior of SC Raptor codes.


