Beiträge aus der Elektrotechnik

Reza Shabanpour

Flexible Amplifiers in a-IGZO TFT Technology

Dresden 2017

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2017

Die vorliegende Arbeit stimmt mit dem Original der Dissertation "Flexible Amplifiers in a-IGZO TFT Technology" von Reza Shabanpour überein.

© Jörg Vogt Verlag 2017 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-014-8

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Technische Universität Dresden

Flexible Amplifiers in a-IGZO TFT Technology

REZA SHABANPOUR

der Fakultät Elektrotechnik und Informationstechnikder Technischen Universität Dresden

zur Erlangung des akademischen Grades

DOKTOR- INGENIEUR

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Jun. -Prof. Dr. -Ing. Kambiz Jamshidi Gutachter: Prof. Dr. -Ing. Frank Ellinger Prof. Dr. Karl Leo

Tag der Einreichung:	28.06.2016
Tag der Verteidigung:	27.03.2017

ACKNOWLEDGEMENTS

First of all, special thanks to my family who always supported me and advised me in all my decisions, and gave me the strength to go for my objectives.

I thank Prof. Frank Ellinger for giving me the chance to perform this thesis at the Chair for Circuit Design and Network Theory. I am very thankful for his support, guidance, and encouragement provided during 4 years of research at TU Dresden. I would also like to thank Prof. Karl Leo for co-examining my PhD thesis.

Additionally, I like to thank Dr. Corrado Carta, Dr. Koichi Ishida, and Dr. Tilo Meister for extensive technical discussions in all scientific, technical and administrative aspects of the project.

Special thanks for my former and current colleagues Dr. Mahdi Khafaji, Amirali Taghavi, Robert Paulo, Christoph Tzschoppe, and Bahman Kheradmand-Boroujeni for the great time, and all the interesting and helpful discussions. I like to thank also to other members of the chair: Markus, Guido, Laszlo, Bastian, Anja, Stefan, and Katharina.

This work would have not been possible without collaboration with researchers of ETH Zurich researchers who are part of the FLEXIBILITY project. In this context, I would like to thank Niko Münzenrieder, Luisa Petti, and Gerhard Tröster.

KURZFASSUNG

Das Gebiet der biegsamen Elektronik erfährt sowohl von der Wissenschaft als auch von der Industrie beträchtliche Aufmerksamkeit, weil es das Potenzial hat eine Vielzahl von Anwendungen nachhaltig zu beeinflussen. Zu diesen Anwendungen gehören tragbare Audiosysteme, biegsame Photovoltaik, biegsame RFID tags, biegsame biomedizinische Sensoren, biegsame Displays und biegsame Lautsprecher, denn solche Anwendungen können nicht mit herkömmlicher waferbasierter Elektronik angegangen werden. Eine der vielversprechendsten Transistortechnologien für biegsame Elektronik ist die der amorphen Indium-Gallium-Zink-Oxid Dünnschichttransistoren (a-IGZO TFT). Diese Transistoren zeigen interessante elektrische Eigenschaften und können bei niedrigen Temperaturen hergestellt werden. Das ermöglicht es a-IGZO TFTs kostengünstig und auf biegsamen Substraten wie Plastefolie und Papier herzustellen. Die Entwicklung von System-on-Chip (SoC), System-in-Package (SiP), organischer und großflächiger Elektronik (OLAE) sowie Elektronik auf unkonventionellen Trägern hat heute sich zu einem interessanten Forschungsgebiet entwickelt. Hauptgrund dafür ist die feste physikalische Grenze für die weitere Strukturverkleinerung der siliziumbasierten integrierten Schaltkreise, was zum Übergang von der Ära des Mooreschen Gesetzes zur Ära Beyond-Moore geführt hat.

Die beiden Hauptbeiträge dieser Arbeit sind: Die Entwicklung eines SPICE-Modells für a-IGZO TFTs und die Entwicklung von Verstärkerschaltungen in a-IGZO TFT-Technologie für biegsame Anwendungen mithilfe dieses SPICE-Modells. Um diese Anwendungen mit a-IGZO TFTs zu ermöglichen, ist die Entwicklung von Schaltungen zur analogen Signalverarbeitung wie Verstärkern, Oszillatoren und Datenkonvertern notwendig.

Als erster Schritt in Richtung biegsamer Elektronikanwendungen werden Subsysteme wie Bewegungs- und Temperatursensoren sowie Analog- und Hochfrequenz-schaltkreise entworfen. Vor der Fertigung dieser Schaltkreise wurde ein Satz von Design Rule Checks (DRCs) durchgeführt, um eine problemlose Fertigung zu garantieren. Diese DRCs garantieren die Funktionalität der Schaltkreise selbst wenn sie bis zu einem Radius von nur 5 mm gebogen werden. Mehrere Verstärkerschaltungen verschiedener Topologie wurden mit diesem Prozess hergestellt. Einige der Topologien, wie der Cherry-Hooper-Verstärker und die Verstärker mit induktiver Überhöhung, wurden das erste Mal in einer TFT-Technologie entwickelt. Insbesondere der Cherry-Hooper-Verstärker erreichte eine 3-dB-Bandbreite von 3.5 MHz, so dass ein Betrieb im MHz-Bereich demonstriert werden konnte.

ABSTRACT

The field of flexible electronics is receiving considerable attention from scientific and industrial communities because of its potential impact on a wide variety of applications including wearable audio systems, flexible photovoltaics, flexible RFID tags, flexible biomedical sensors, flexible displays, and flexible loudspeakers, which cannot be addressed by conventional wafer-based electronics. One of the most promising device developed for the flexible electronics technology are the amorphous Indium-Gallium-Zink-Oxide thin-film transistors (a-IGZO TFT). These devices show interesting electrical characteristics and can be fabricated at low temperatures. These features allow the implementation of a-IGZO TFTs on flexible substrates such as plastic foil or paper, and also enables cost effective manufacturing. The development of systems on a chip (SOC), system in a package (SIP), organic and large-area electronics (OLAE), and electronics on unconventional substrates has become an interesting research area nowadays, mainly due to the inevitable down-scaling limit on silicon-based electronic devices which has led to the transition from the era of Moore's law to the beyond Moore era.

This thesis presents two major ideas: First, a development of a SPICE model for a-IGZO TFTs, and second being design of TFT amplifier circuits targeting flexible electronics applications, using the developed model. To enable such applications with a-IGZO TFTs, the development of analog processing circuits, such as amplifiers, oscillators, and data converters, are needed.

As the first step toward the development of flexible electronics applications, subsystems like motion and temperature sensors, analog and radio frequency (RF) circuits are designed. Prior to the fabrication of these circuits, a set of design rule checks (DRCs) were performed for manufacturability. These DRCs guarantee the functionality of the circuits even when the flexible substrates are bent to a radius of 5 mm. Several amplifiers with different topologies were fabricated using this process. Some topologies like Cherry-Hooper amplifier and amplifier using inductive peaking technique are developed for the first time in TFT technology. The Cherry-Hooper amplifier in particular exhibited a 3 dB bandwidth of 3.5 MHz, thereby demonstrating operation in the megahertz regime.

CONTENTS

1 Introduction	1
1.1 Motivation	1
1.2 Scope of Application	2
1.3 Objectives and Structures	5
1.4 Thesis Outline	6
References	9
2 Transistor Basics1	1
2.1 Introduction	1
2.2 Device Structure	1
2.3 Electrical Performance of a-IGZO TFTs1	3
2.4 Limitation of the Technology1	5
References1	9
3 Transistor Models for Analog Circuit Design2	1
3.1 Introduction	1
3.2 RPI-aTFT Model Template	3
3.3 Developed RPI-aTFT Model Template2	4
3.4 Layout	2
3.4.1 Overview of layout design in the a-IGZO TFT technology	2
3.5 Design Rule Check (DRC)	5
References4	1
4 Design Considerations for Analog Circuits Based on TFTs4	3
4.1 Introduction	3
4.2 Amplifiers for Our Targeted Applications4	4
4.3 Analog Circuit Techniques Applied to TFTs4	7
4.3.1 Drawbacks associated with a-IGZO TFTs 4	8
4.4 Circuit Classifications	9
4.5 Measurement Setup	1
References	5
5 Amplifiers	7

5.1 Introduction	57
5.2 Elemental Amplifier Circuits	
5.2.1 Common-Source (CS) amplifier	
5.2.2 Common-Gate (CG) amplifier	65
5.2.3 Cascode Amplifier	
5.3 Complex Amplifier Circuits	77
5.3.1 Cascode amplifier with inductive peaking	77
5.3.2 High-Gain amplifier based on positive-feedback	
5.3.3 Operational amplifier based on positive feedback (OPAMP)	
5.3.4 Cherry-Hooper Amplifiers	
5.4 Summary and Conclusions:	
References	117
6 Conclusions and future work	121
6.1 Conclusions	121
6.2 Future Work	
Curriculum Vitae	
Publications	

LIST OF TABLES

Table 1-1: Participants and main tasks
Table 3-1: Key model parameters2
Table 3-2: Key model parameters
Table 5-1: Small-signal parameters of the proposed audio amplifier
Table 5-2: Performance comparison of amplifiers
Table 5-3: Small-signal parameters of the proposed amplifier
Table 5-4: Performance comparison of amplifiers
Table 5-5: Performance comparison of amplifiers 70
Table 5-6: Small-signal parameters of the proposed amplifier
Table 5-7: Performance comparison of amplifiers
Table 5-8: Small-signal parameters of the proposed amplifier
Table 5-9: Performance comparison of amplifiers
Table 5-10: Small-signal parameters of the single-ended OPAMP93
Table 5-11: Performance comparison of OPAMPs95
Table 5-12: Small-signal parameters of Amp 1
Table 5-13: Small-signal parameters of Amp 2
Table 5-14: Performance comparison of amplifiers
Table 5-15: Small-signal parameters of Amp 3107
Table 5-16: Small-signal parameters of Amp 4107
Table 5-17: Performance comparison of amplifiers
Table 5-18: Small-signal parameters of the proposed VGA112
Table 5-19: Performance comparison of the wideband amplifiers in this thesis115
Table 5-20: Performance comparison of the baseband pre-amplifiers in this thesis
Table 5-21: Performance comparison of the audio amplifiers in this thesis115

LIST OF FIGURES

Fig. 1-1: System architecture of the flexible wearable audio system4
Fig. 2-1: The device cross section of bottom-gate a-IGZO TFT including layer
materials and thicknesses
Fig. 2-2: Typical I-V characteristics of a-IGZO TFT {W, L} = {50 μ m, 10 μ m}.
Fig. 2-3: Threshold voltage shift ($\Delta V_{th})$ of bottom-gate a-IGZO TFTs induced by
different gate bias stress fields (Estr) [12]17
Fig. 3-1: The simplified small-signal equivalent circuit of the n-type a-IGZO
TFT22
Fig. 3-2: The simplified equivalent circuit of a-IGZO TFT used in the RPI-aTFT
model template24
Fig. 3-3: (a) $I_D\text{-vs-}V_{DS}$ at $V_{GS}\text{=}5$ V at different channel lengths, (b) measured and
simulated threshold voltage-vs-channel lengths (W_{REF}=50 μm)24
Fig. 3-4: Measured and simulated I _D -vs-L with W _{REF} =50 μm : (a) V _{DS} =V _{GS} =5 V,
(b) V_{GS} =5 V and V_{DS} =2 V28
Fig. 3-5: The root-mean-square error of the developed and basic model templates
with the measurement results-vs-L when $V_{\text{GS}} {=} 5$ V, and $V_{\text{DS}} {=} 0 {-} 3$ V. Inset:
simulated $I_{\rm D}$ using the basic model-vs-V_{DS} for different channel lengths28
Fig. 3-6: Threshold voltage shift due to the process tolerance28
Fig. 3-7: Measured and simulated $I_D\text{-}V_{DS}$ and $I_D\text{-}V_{GS}$ characteristics of the a-
IGZO TFT (50 μm/5 μm)29
Fig. 3-8: Measured and simulated $I_D\mathchar`-V_{DS}$ and $I_D\mathchar`-V_{GS}$ characteristics of the a-
IGZO TFT (50 μm/50 μm)29
Fig. 3-9: Measured and simulated maximum I_D -vs-channel length variations from
5 μm to 50 μm29
Fig. 3-10: Measured and simulated S-parameters of a single TFT (50 μ m/5 μ m)
DUT
Fig. 3-11: Small-signal model of the a-IGZO TFT with scalable parasitic
elements

Fig.	3-12: Gate metal layer width in the layout (GDS) for non-self-aligned
	technology
Fig.	3-13: Top view of the bottom-gate a-IGZO TFT in ADS layout environment.
г.	
F1g.	3-14: I op view and cross section of the bottom-gate non-self-aligned a-
	IGZO TFT with interconnections in ADS layout environment
Fig.	3-15: Top view and cross section of the bottom-gate self-aligned a-IGZO
	TFT with interconnections in ADS layout environment
Fig.	3-16: Top view of the resistor layout with interconnections
Fig.	3-17: Top view of the capacitor layout with interconnections
Fig.	3-18: Layout of one unit cell in one chip before and after fabrication39
Fig.	3-19: Layout of one unit cell in one chip before fabrication with an
	additional metal layer (M 3) 40
Fig.	4-1: Fully flexible modules of the heterogeneously integrated audio bag 44
Fig.	4-2: System structure of the audio bag, where all components are flexible. 45
Fig.	4-3: Photograph of the fully flexible digitally controlled tuner (top-left),
	channel control logic (bottom-left), AM radio, and speaker driver (right part)
	on an inkjet printed circuit board (IPCB)45
Fig.	4-4: Cross-section, process flow, and characteristics of inkjet printed circuit
	board (IPCB) integration technology
Fig.	4-5: Electrical stability of the a-IGZO TFT within 8 hours continuous
	operation
Fig.	4-6: Circuit classifications
Fig.	
	4-7: Flexible substrate, where all TFT circuits are integrated
Fig.	4-7: Flexible substrate, where all TFT circuits are integrated
Fig.	4-7: Flexible substrate, where all TFT circuits are integrated
Fig. Fig.	 4-7: Flexible substrate, where all TFT circuits are integrated
Fig. Fig. Fig.	 4-7: Flexible substrate, where all TFT circuits are integrated
Fig. Fig. Fig.	 4-7: Flexible substrate, where all TFT circuits are integrated
Fig. Fig. Fig. Fig.	 4-7: Flexible substrate, where all TFT circuits are integrated
Fig. Fig. Fig. Fig. Fig.	 4-7: Flexible substrate, where all TFT circuits are integrated

Fig.	5-3: The proposed audio amplifier schematic. The minimum feature size is	
	in 30 µm	0
Fig.	5-4: (a) Oppositely-stacked MOS diodes, (b) and its equivalent resistance. 6	1
Fig.	5-5: Die micrograph photo of the proposed audio amplifier	3
Fig.	5-6: Frequency responses of the proposed audio amplifier	3
Fig.	5-7: Simulated frequency responses of the amplifier for printed piezoelectric	С
	loudspeakers with the areas of 16 cm ² and 128 cm ² 6	4
Fig.	5-8: 1 dB compression point of the proposed audio amplifier6	4
Fig.	5-9: (a) Common-gate circuit, (b) input-output characteristic, (c) small-	
	signal equivalent circuit	6
Fig.	5-10: Cascode circuit, (b) small-signal equivalent circuit of the cascode	
	amplifier	7
Fig.	5-11: (a) Schematic of the wideband cascode amplifier, (b) die micrograph	
	photo	8
Fig.	5-12: Frequency responses of three wideband cascode amplifiers6	9
Fig.	5-13: Frequency responses of the proposed cascode amplifier7	0
Fig.	5-14: 1 dB compression point of the proposed cascode amplifier7	0
Fig.	5-15: (a) Schematic of the proposed baseband amplifier, (b) die micrograph	
	photo7	2
Fig.	5-16: Frequency responses of Amp 1 and Amp 27	3
Fig.	5-17: 1 dB compression points of Amp 1 and Amp 27	3
Fig.	5-18: (a) Schematic of the audio amplifier (Amp 3), (b) die micrograph	
	photo7	4
Fig.	5-19: Frequency responses of Amp 37	5
Fig.	5-20: 1 dB compression point of Amp 37	5
Fig.	5-21: Simulated frequency responses of the amplifier for printed	
	piezoelectric loudspeakers with the areas of 16 $\rm cm^2$ and 128 $\rm cm^27$	6
Fig.	5-22: (a) Schematic view of the cascode amplifier with active inductive load	1,
	(b) small-signal equivalent circuit of Z _{out} 7	8
Fig.	5-23: (a) Variation of $ Z_{out} $ -vs-frequency, (b) equivalent circuit (model) of	
	Z _{out}	9
Fig.	5-24: (a) Schematic of the proposed amplifier, (b) die micrograph photo8	0

Fig. 5-26: 1 dB compression point of Amp 3Fig. 5-27: CS amplifier with high-gain topology: (a) feedback unit includes with two stages inverting buffers (M₃-M₆), (b) low frequency equivalent	82 M ₂ nt 83 o 84
Fig. 5-27: CS amplifier with high-gain topology: (a) feedback unit includes with two stages inverting buffers (M ₃ -M ₆), (b) low frequency equivaler	M ₂ nt 83 84
with two stages inverting buffers (M_3-M_6) , (b) low frequency equivaler	nt 83) 84
	83 5 84
circuit	o 84
Fig. 5-28: (a) Schematic of the proposed amplifier, (b) die micrograph photo	
Fig. 5-29: CS stage (M_1, M_2) of the proposed amplifier with open-loop feedb	vack
(M ₃ -M ₆), parasitic capacitances, and resistances seen from each node (Vo,
V _A , V _B)	85
Fig. 5-30: Frequency responses of the proposed amplifier	88
Fig. 5-31: (a) Voltage gain variations of the proposed amplifier due to the	
process variations, (b) simulated voltage gain of the proposed amplifier	vs
input voltage level	89
Fig. 5-32: Measured 1 dB compression point of the proposed amplifier	89
Fig. 5-33: Schematic of the single-ended OPAMP	91
Fig. 5-34: Die micrograph photo of the single-ended OPAMP.	93
Fig. 5-35: Frequency responses of the single-ended OPAMP.	93
Fig. 5-36: 1 dB compression point of the single-ended OPAMP	94
Fig. 5-37: (a) Two stages with feedback, (b) schematic of the Cherry-Hoope	er
amplifier with source-followers in feedback loop	96
Fig. 5-38: Small-signal model of the Cherry-Hooper amplifier.	96
Fig. 5-39: Schematic of the proposed single-ended Cherry-Hooper	
amplifier: (a) without buffer stage (Amp 1), (b) with buffer stage (Amp	2).
	98
Fig. 5-40: Die micrograph photos of the proposed Cherry-Hooper	
amplifiers: (a) Amp 1, (b) Amp 2	100
Fig. 5-41: Frequency responses of Amp 1.	101
Fig. 5-42: 1 dB compression point: (a) Amp 1, (b) Amp 2	101
Fig. 5-43: Frequency responses of Amp 2.	101
Fig. 5-44: Schematic of Amp 3.	103
Fig. 5-45: Small-signal model of Amp 3	103
Fig. 5-46: Schematic of Amp 4.	105

Fig. 5-47: Die micrograph photos of the proposed Cherry-Hooper amplifiers:
(a) Amp 3, (b) Amp 4106
Fig. 5-48: Frequency responses of Amp 3108
Fig. 5-49: 1 dB compression point: (a) Amp 3, (b) Amp 4108
Fig. 5-50: Frequency responses of Amp 4108
Fig. 5-51: Schematic of the proposed VGA110
Fig. 5-52: Simplified small-signal equivalent of the proposed VGA110
Fig. 5-53: Die micrograph photo of the proposed VGA112
Fig. 5-54: Predicted frequency responses of the proposed VGA at $V_{\text{ctrl}}{=}5$ V112
Fig. 5-55: Frequency responses of the proposed VGA113
Fig. 5-56: Voltage gain of the proposed VGA for different control voltages113
Fig. 5-57: Photograph of the fully flexible digitally controlled tuner (top-left),
channel control logic (bottom-left), AM radio, and speaker driver (right part)
on an inkjet printed circuit board (IPCB)114
Fig. 6-1: Audio bag including flexible TFT circuits and textile antenna
Fig. 6-2: Misalignment in the fabrication process of TFT technology124
Fig. 6-3: Fabrication issues: (a) lack of metal layers, (b) lack of gold metal layer.
Fig. 6-4: Fabrication issues: (a) waved-shaped gate, (b) several failures in one
circuit layout
Fig. 6-5: Non-etched gold metal layer125

LIST OF ABBREVIATIONS AND ACRONYMS

Symbol	Description
AF	Audio frequency
AM	Amplitude modulation
Au	Gold
Al ₂ O ₃	Aluminum-oxide
ALD	Atomic layer deposition
a-IGZO	Amorphous Indium-Gallium-Zink-Oxide
a-Si:H TFT	Hydrogenated amorphous silicon thin-film transistor
ADS	Advanced designed system
A_F	Feedback voltage gain
a	Voltage gain
BW	Bandwidth
CS	Common-source
CG	Common-gate
Cr	Chromium
C_g	Gate capacitance
C_{ch}	Channel capacitance
Cov	Overlap capacitance
CAD	Computer aided design
Cox	Oxide capacitance (transistor)
CMOS	Complementary metal-oxide semiconductor

dBV dB referenced to 1 V (rms)

DRC	Design rule check
Def0	Dark fermi level
Estr	Gate bias stress field
c	T
It	I ransit frequency
g _m	Transistor transconductance
gds	Transistor drain to source transconductance
GBWP	Gain-bandwidth-product
GDS	Graphic data system file
HF	High frequency
HP	High power
Iol	Zero-bias leakage current
ID	Drain current
IC	Integrated circuit
IPCB	Inject printed circuit board
k	Boltzmann's constant
Lov	Transistor gate to source / drain overlap length
LVS	Layout-vs-schematic
L	Transistor channel length

MOSFET Metal-oxide-semiconductor field-effect transistor

NMOS	n-channel MOSFET
Na	Channel doping
n _i	Intrinsic carrier concentration
OLED	Printed organic LED
OSMD	Oppositely-stacked MOS diode
OOK	On-off keying
OFET	Organic field-effect transistor
PM	Phase margin
PECVD	Plasma-enhanced chemical vapor deposition
РСВ	Printed circuit board
q	Unit charge
RPI-aTFT	Rensselaer polytechnic institute-amorphous TFT
R2R	Roll to roll
ro	Intrinsic output resistance of a transistor
RF	Radio frequency
RFID	Radio-frequency identification
SiNx	Silicon nitride
Sigma0	
	Minimum leakage current

SOC	System on chip			
Т	Absolute temperature			
Ti	Titanium			
TOLAE	Thin-film and organic large area electronic system			
TFT	Thin-film transistors			
T.,	Ovide thickness			
100				
UV	Ultraviolet			
V _{DS}	Drain-source voltage			
V _{th}	Threshold voltage			
V _{GS}	Gate-source voltage			
VGA	Variable gain amplifier			
V _{DD}	DC supply voltage			
V _A	Early voltage			
Vs	Band bending			
W	Transistor channel width			
W/L	Width over length ratio (transistor)			
ω	arbitrary angular frequency			
ω_0	angular chirp starting frequency			
ZnO	Zink-Oxide			
μ_n	Mobility of charge carriers in the channel of an transistor			

xxii

n-type

μ FET,lin	Effective field-effect mobility in the linear regime		
$\mu_{FET,sat}$	Effective field-effect mobility in the saturation regime		
ε ₀	Vacuum permittivity		
ε _r	Relative permittivity		
ΔL	Channel length variation		
ΔV_{th}	Threshold voltage shift		
λ	Channel length modulation		
∂_{∂}	first partial derivative operator		

1 INTRODUCTION

1.1 Motivation

Transparent electronics is a rapid growing field that has gained a lot of attention and interest from researchers in academic and industrial areas around the world, especially in the last decade. This motivation was mainly maintained by the first report on thin-film transistors (TFTs) for transparent electronics published in [1]-[3], all of them employed a Zink-Oxide (ZnO) as the channel layer material. One year later, Nomura et al. reported the successful work on the fabrication at room-temperature of transparent TFTs on flexible substrates using an amorphous Indium-Gallium-Zink-Oxide (a-IGZO), as the active layer material [4]. This active layer demonstrates higher carrier mobility in comparison to the other amorphous semiconductors employed in TFTs, namely hydrogenated amorphous silicon thinfilm transistor (a-Si:H TFT) which is largely used in solar cells and flat panels. Later, the flexible electronics technology has been improved to a certain level of performance that promises to change the daily life of people all over the world.

Due to these researchers' works, mechanically flexible and therefore bendable devices can be integrated as a bendable electronic system for wearable devices, textiles, or healthcare equipment, and therefore lead to a wider functionality of everyday objects [5],[6]. In addition, quite new flexible applications such as bendable displays, bendable loudspeakers, or smart RFID (radio-frequency identification) tags seem to be possible for realization. Regardless of the device bendability, flexible electronics introduces two additional benefits in comparison to the standard silicon technology. First, the fabrication process can be proceed in lower temperatures that make possible the use of flexible substrates such as plastic and paper. Therefore size and weight are not comparable with the available single crystalline semiconductor wafers. Second, bendability of the flexible large scale substrates leads roll to roll (R2R) fabrication method. However, it has to be mentioned that the operational stability and operational frequency of TFTs and complexity of TFT circuits cannot compete with circuits in semiconductor wafers. By the way, this technology is still not matured and needs to be improved, and as the moment of writing this thesis, several improvements proposals are being investigated on this subject.

Today, most TFT-based applications are largely limited to digital circuits. However, it is also necessary to consider circuit designs in analog domains to fill the gap between the analog and digital worlds. This can only be achieved with circuits that can handle analog signals with comparable performance and reliability level as those designed and implemented in digital subsystems. Some valuable works have been carried out in recent years concerning mechanical and electrical performance improvement of a-IGZO TFTs, and analog circuit designs [6],[7].

This thesis investigates and describes a collection of amplifier circuit topologies and techniques for its use in analog signal processing with special requirements for targeted applications such as: flexible AM (amplitude modulation) shortwave radio receive, printed loudspeaker driver, On-Off Keying (OOK) receiver, temperature sensor, and motion sensor.

1.2 Scope of Application

This work was partly funded by the European Commission, under project FLEXIBILTY (Flexible Multifunction Bendable Integrated Light-Weight Ultra-Thin Systems) and the German Research Foundation (DFG) within the Organic Path Cluster of Excellence "Center for Advancing Electronics Dresden". The goal of the FLEXIBILITY project [8],[9] is advancing the competitiveness of Europe in the area of multifunctional, ultra-lightweight, ultra-thin, bendable thin-film and

	TUD	Coordination, audio amplifier, broadcast and data radios
e Enfucell	ENF	Primary batteries
Pm	TUC	R2R printing and fabrication, speakers, audio oscillator
SIEMENS	SIE	Sensor systems and packaging
ETH	ETH	IGZO thin film technology and fabrication
	EXO	Wireless streaming platform e.g. for advertisements and web page
CONTROL SYSTEMS	DCS	Sensor platforms e.g. for security and food
Smartex	SMA	Textile integration, wearable audio system, and packaging
	VAR	Secondary batteries e.g. rechargeable batteries
KONARKA*	KON	Solar cells e.g. OPV to battery interface electronics
~	VTT	Touch screen and user interfaces
BELECTRIC [®] Belectric OPV GmbH	BEL	Solar cells e.g. OPV to battery interface electronics

Table 1-1: Participants and main tasks

organic large area electronic systems (TOLAE). With TOLAE, technology systems can be fabricated on a simple piece of plastic foil or even paper resulting in low fabrication costs per area [9]. Developed TOLAE components consist of disposable and rechargeable batteries, organic solar cells, DC charging electronics, printed piezoelectric loudspeakers, flexible audio amplifiers, analog signal generators, temperature and motion sensors, receiver circuits, and touch screens.

There were several partners from Austria, Finland, Germany, Italy, Greece and Switzerland in FLEXIBILITY involved dealing with the different aspects of the entire approach. Table 1-1 summarizes the participants and their main tasks.

Fig. 1-1: System architecture of the flexible wearable audio system.

The FLEXIBILITY group has access to a large number of flexible technologies suitable to implement a wide range of functional electronic systems for flexible or wearable applications: disposable and rechargeable batteries, organic FET transistors (OFETs), flexible TFTs, flexible temperature and motion sensors, printed organic LEDs (OLEDs) and touch screens, textile and printed antennas, and textile integration technology. The project aimed at designing and implementing mechanically flexible multifunctional systems such as AM shortwave radio receiver for wearable applications or integrating components in packaged flexible systems. The main goal of the FLEXIBILITY is further improvement in developing all the available technologies to facilitate their integration into bendable or flexible wearable systems, making them electrically and functionality adaptable each with all others [9]. In FLEXIBILITY, three of such systems were proposed as a planning phase of the project for showing the potential of the consortium technologies [9],[10]: 1) Textile integrated audio module with integrated AM shortwave radio, and solar supply; 2) wireless streaming of audio data and advertising by active receiver tag; 3) motion or temperature sensor for soft book. Fig. 1-1 represents the architecture of the audio module with broadcast radio receiver which is the most critical application in this

project. The system includes various integrated flexible modules, which are a broadcast radio receiver and a sound module with driving electronics.

For the implementation of such mechanically flexible system, the features of various low-cost TOLAE technologies are integrated. Microscale (down to $2 \mu m$), fast (transit frequency > 200 MHz, carrier mobility > 7.5 cm²V⁻¹s⁻¹) a-IGZO TFT [11] technology allows wireless communication systems. The R2R printing method is used for elements requiring large areas such as piezoelectric loud speakers, high-power OFETs, solar cells, and 3-D integration, as well as implementation of heterogeneous devices on one single substrate. Scalable model templates and therefore design-kits in advance design CAD tools are developed for simulating and drawing layout to enable efficient circuit development. Interface and packaging challenges are studied for full system integration on one flexible plastic foil with maximum bending radius of 5 mm.

1.3 Objectives and Structures

This work presents a structured approach for the design of several amplifiers using TFT technology for targeted applications in the project. Key points of investigations are as follows:

- **Thin-film transistors:** The electrical properties of the a-IGZO TFT, the device structure, and its manufacturing process are introduced.
- **Modeling:** AC and DC characteristics of a-IGZO TFTs are performed, and a TFT-based model template is introduced and developed for circuit designs, as well as drawing layouts of the circuits.
- **Design and theory:** Several technologies of amplifiers are introduced in the frame of defined applications in FLEXIBILTY project. Methods for designing of all major blocks for the targeted systems are presented. The limitations of technology which have effects on the circuit performance are introduced. Then, such these topologies are developed in order to be able to reduce these effects such as the effect of threshold voltage shift in a-IGZO TFTs due to constant biasing. Finally, a fully integrated wearable audio system including a complete AM radio receiver

and loudspeaker driver systems, charging electronics, and textile antenna is developed, which combines all analog and digital building blocks.

The focus of this work is on circuit designs. It is not intended to provide a thorough discussion on device fabrication, technology limitations, and device modeling which are reported mostly by previous works [6],[7]. However, it is necessary for verification of the whole system; a TFT model template is developed and applied, but the detailed procedure is described only as much as necessary for general understanding.

1.4 Thesis Outline

This thesis is structured as follows:

- Chapter 2 provides a theoretical background regarding the subjects of a-IGZO semiconductor operation, transistor basics, and device structure. Moreover, limitations of the a-IGZO technology is introduced.
- Chapter 3 is devoted to the SPICE model template based on a-IGZO TFT, and implemented in an advanced design simulator written in behavioral language Verilog-A. DC and AC parameters have also been extracted for several single a-IGZO TFTs. The DC RPI-aTFT model has been developed and adapted to the a-IGZO TFTs to take scalability of the device into account. A higher-order AC approximation model is also introduced to improve the simulation of a-IGZO TFT behavior at high frequencies. In addition, layouts of the components which are fabricated based on this technology such as transistors, resistors and capacitors will be introduced. All of these concepts are presented in this chapter in order to familiarize the reader to some of the specific topics that were involved in the work.
- Chapter 4 provides the methodology behind the design process of the amplifier, circuit classifications, and the measurement setup.
- **Chapter 5** provides the design of integrated circuits, circuit analyses, and their measurement results in detail. Furthermore, the measurement results are compared with the similar published works in TFT technology.

• **Chapter 6** is the final chapter of this work. It presents the conclusions which are achieved from the work, proposals for future improvement of the proposed topologies, and potential applications that can be constituted using the produced amplifiers.

Flexible Amplifiers in a-IGZO TFT Technology

References

- [1] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, "Transparent thin film transistors using zno as an active channel layer and their electrical properties," *Journal of Applied Physics Letters*, vol. 93, no. 3, pp. 1624–1630, February 2003.
- [2] R. L. Hoffman, B. J. Norris, and J. F. Wager, "Zno-based transparent thinfilm transistors," *Journal of Applied Physics Letters*, vol. 82, no. 5, pp. 733– 735, February 2003.
- [3] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., "Transparent zno thin-film transistor fabricated by rf magnetron sputtering," *Journal of Applied Physics Letters*, vol. 82, no. 7, pp. 1117–1119, February 2003.
- [4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," *Letters to Nature*, vol. 432, no. 7016, pp. 488–492, October 2004.
- [5] A. Nathan, A. Ahnood, Matthew T. Cole, Sungsik Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, Daping Chu, A.J. Flewitt, A.C. Ferrari, M.J. Kelly, J. Robertson, G. Amaratunga, and William I. Milne, "Flexible electronics: The next ubiquitous platform," *Proceedings of the IEEE*, 100(13):1486–1517, May 2012.
- [6] N. Münzenrieder, "Flexible oxide semiconductor electronics on plastic," substrates.url={http://e-collection.library.ethz.ch/view/eth:7908}, PhD thesis ETH Zürich, October 2013.
- [7] B. F. G. de Silva, "Analog Circuit Design with Transparent Electronics," *PhD thesis, Faculty of Engineering*, University of Porto, July 2013.
- [8] www.flexibility fp7.eu, "EC Integrating Project Flexible, Organic and Large Area Electronics and Photonics (FLEXIBILITY)," FP7-ICT-2011.3.6; Grant Agreement Number: 287568.
- [9] C. Carta, K. Ishida, B. Kheradmand-Boroujeni, R. Shabanpour, T. Meister, G. Schmidt, E. Suomalainen, A. Brandlmaier, G. A. Salvatore, N. Munzenrieder, L. Petti, G. Troster, D. Petrantonakis, D. Kozakis, R. Paradiso, M. Krebs, M. Tuomikosko, H. J. Egelhaaf, and F. Ellinger, "Overview of the EC Project FLEXIBILITY: Organic and Thin-Film ICs up to Radio Frequencies for Multifunctional Flexible Systems," *SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)*, pp. 1-2, August 2013.
- [10] F. Ellinger, C. Carta, A. Hubler, G. Schmidt, J. Zapf, G. Troster, A. Talo, D. Kozakis, D. Vassiliadis, R. Paradiso, M. Krebs, M. Scharber, and M. Tuomikoski, "Organic and large-area electronic (OLAE) technologies for smart textiles (Chapter 9)," *In Multidisciplinary know-how for smarttextiles developers, Woodhead Publishing Series in Textiles*, T. Kirstein, Ed. Cambridge, UK, Woodhead Publishing Ltd., pp. 253 – 284, 2013.
- [11] N. Munzenrieder, L. Petti, C. Zysset, G. A. Salvatore, T. Kinkeldei, C. Perumal, C. Carta, F. Ellinger, and G. Troster, "Flexible a-IGZO TFT" amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz

Flexible Amplifiers in a-IGZO TFT Technology

while bent to a radius of 5 mm," *IEEE International in Electron Devices Meeting (IEDM)*, pp. 5.2.1–5.2.4, December 2012.

2 TRANSISTOR BASICS

2.1 Introduction

Thin-film transistors (TFTs) using a-IGZO technology have been fabricated on a free-standing polyimide foil. They are based on bottom-gate structure, which isolates the channel from the substrate. These two structural aspects make TFT device electrical characteristics independent of the substrate bias voltage, which is an advantage compare to metal-oxide-semiconductor field-effect transistor (MOSFET).

The device structure and electrical properties are described in the following sections:

2.2 Device Structure

Fig. 2-1 presents the corresponding cross section of the bottom-gate a-IGZO TFT fabricated on a 50 μ m-thick (Kapton E from DuPont) free-standing polyimide foil, which has no electric influence on the device operation. The device is fabricated by standard ultraviolet (UV) lithography. The channel material is not embedded in the substrate, and instead deposited in the semiconductor material on top of the substrate.

In this work three types of a-IGZO TFT are used: High frequency (HF) self-aligned and non-self-aligned a-IGZO TFT, and high power (HP) a-IGZO TFT.

Fig. 2-1: The device cross section of bottom-gate a-IGZO TFT including layer materials and thicknesses.

At the moment, the available oxide semiconductor TFT technology only provides n-type TFTs.

The non-self-aligned a-IGZO device is fabricated using five photography masks (five-layer process). The device is manufactured as follows [12]:

As it was mentioned above, a 50 μ m-thick polyimide foil is used as flexible substrate. A 50 nm-thick SiN_x is deposited on both sides of the substrate to increase the adhesion between the substrate and all other material layers by PECVD. A 35 nm-thick Chromium (Cr) is used to fabricate the gate contact in order to provide a better adhesion in comparison to the most other metals. A 25 nm-thick (80 nm for HP a-IGZO TFTs) Al₂O₃ is deposited as a gate insulator, which can provides a high dielectric $\varepsilon_r = 9.5$. The gate insulator is fabricated by ALD with the highest temperature of 150°C. Then, a 15 nm-thick semiconductor (amorphous IGZO) is sputtered in room temperature. A 10 nm-thick Titanium (Ti) and a 60 nm-thick gold (Au) are used to fabricate the source and drain contacts. Finally, passivation of the device is done by deposition of the additional 25 nmthick layer of Al₂O₃.

Self-alignment of the source and drain contacts has been used to fabricate shorter channel length devices up to 0.5 μ m, and a gate-to-source / drain overlap (L_{ov}) of 1.5 μ m [13]. However, L_{ov} in the non-self-aligned technology for HF and HP TFTs are 5 μ m and 15 μ m, respectively. The fabrication process of self-aligned a-IGZO TFTs are the same as non-self-align devices, however, Ti is used to fabricate the gate contact, and Cr and Au are used to fabricate gate and drain contacts. Comparable to standard silicon technology, self-alignment can be