Beiträge aus der Informationstechnik

Mobile Nachrichtenübertragung Nr. 87

Tobias Seifert

Turbo Receivers for Equalizing Frequency-Selective MIMO Channels: Algorithms and Implementations

Dresden 2017

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2017

Die vorliegende Arbeit stimmt mit dem Original der Dissertation " Turbo Receivers for Equalizing Frequency-Selective MIMO Channels: Algorithms and Implementations" von Tobias Seifert überein.

© Jörg Vogt Verlag 2017 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-023-0

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Technische Universität Dresden

Turbo Receivers for Equalizing Frequency-Selective MIMO Channels: Algorithms and Implementations

Tobias Seifert

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender:	Prof. Dr. rer. nat. Stefan Mannsfeld
Gutachter:	Prof. DrIng. Dr. h.c. Gerhard P. Fettweis
	Prof. Dr. sc.techn. Andreas Herkersdorf

Tag der Einreichung:03. Februar 2017Tag der Verteidigung:30. Mai 2017

Abstract

Received signals of modern wireless communications systems are impaired by temporal and spatial interferences between the symbols. Consequently, a sophisticated equalizer is required as an essential component of the receiver. When *a priori* knowledge based on decoder results is taken into account in the equalization procedure, interference can be reduced more efficiently than in conventional low-complex receivers. These schemes are referred to as *turbo equalization*.

This work focuses on turbo receiver schemes to equalize frequency-selective MIMO channels, which introduces intersymbol interference (ISI) and interantenna interference (IAI). The thesis is divided into two parts: The first part (Chapter 4) investigates different MMSE-based algorithms in terms of communications performance and computational complexity. In this context, a novel multi-iterative turbo receiver is proposed to enable interferenceaware receiving with respect to the given channel scenario. It is furthermore shown, that normalizing the filter coefficients reduces the equalization bias and improves significantly the reliability of the transmission. The second part (Chapter 5) demonstrates an implementation of the developed algorithm based on a programmable solution. The equalizer application has been profiled whereas matrix inversion was identified as the most computational intensive operation. Starting from a RISC processor instruction set architecture, new equalizer-specific functional units (FUs) have been developed and integrated in order to accelerate both non-recursive and recursive operations. The design was optimized towards high area-efficiency, thus increasing the performance throughput with reasonable low additional hardware effort. In contrast to ASIC implementations, the resulting ASIP core enables very high flexibility to support different equalizer modes along with moderate to high performance.

Kurzfassung

Wichtiger Bestandteil gegenwärtiger und zukünftiger Mobilfunksysteme ist die Verwendung mehrerer Sende- und Empfangsantennen, die auf Empfangsseite zu räumlicher Überlagerung der Sendesignale führen. In Verbindung mit Mehrwegeausbreitung sind diese Signale zusätzlich von sogenannter zeitlicher Intersymbol-Interferenz geprägt. Zur Auflösung der Interferenzen benötigt es einen Entzerrer als zentrale Verarbeitungskomponente. Die vorliegende Arbeit beschäftigt sich mit iterativen Empfängerstrukturen, auch Turbo-Empfänger genannt, die einen signifikanten Leistungsgewinn der Übertragungszuverlässigkeit ermöglichen. Dabei werden neuartige, mehrfachiterative Konzepte vorgestellt und sowohl hinsichtlich ihrer algorithmischen Komplexität als auch ihrer Leistungsfähigkeit untersucht. Neben algorithmischen Betrachtungen stehen insbesondere effiziente Implementierungen auf Basis einer erweiterten Befehlssatzarchitektur zur Beschleunigung der Kernoperationen des Entzerrers im Fokus dieser Arbeit.

Acknowledgement

The contributions of this work are based on the research carried out during my time as research associate at the Vodafone Chair Mobile Communications Systems at the TU Dresden. I would like to express my sincere gratitude to my advisor Professor Gerhard Fettweis for giving me the opportunity of being part to the team and for his continuous support. His guidance and inspirations always formed a motivation and excitement, without which it would not have been possible to write this thesis. I also thank my second reviewer Professor Andreas Herkersdorf for his interest in my topic and the valuable feedback.

My thanks go to Dr. Emil Matus, the head of the hardware and tools group. I am very grateful for the fruitful technical discussions with him as well as with all other group members, namely: Esther, Steffen, Benedikt, Friedrich, Sebastian, and many other. Furthermore, I want to thank my students Simon and Steffen, who I had the chance to supervise during their diploma theses. Their work was a valuable contribution to my research. Special thanks to my friends Marko and Sebastian for turning ordinary lunchtime into awesome, memorable Mensa happenings.

Finally, I also thank my parents for their immense trust and appreciation for everything I do.

Dresden, May 2017

Tobias Seifert

Contents

No	Notation and Symbols xxv		
1	Intr	oduction	1
	1.1	Scope and Outline	2
	1.2	Notation	4
2	Fun	damentals	7
	2.1	Multipath Propagation in Wireless Channels	7
		2.1.1 Input/output model of the wireless channel	9
	2.2	Modulation Schemes in 4G/5G 1	1
		2.2.1 Single-Carrier FDMA in LTE	2
		2.2.2 Generalized Frequency-Division Multiplexing 1	5
	2.3	Channel Scenarios for SC-FDMA Transmission 1	7
	2.4	Summary 2	0
3	Cha	nnel Equalization and MIMO Detection in non-Iterative Re-	
	ceiv	ers 2	1
	3.1	Communications System Model - Uplink	1
	3.2	An Overview of Channel Equalization Methods 2	4
		3.2.1 Detection based on Maximum Likelihood and Maxi-	
		mum A Posteriori Probability	5
		3.2.2 Linear Equalization	7
		3.2.3 Interference Cancellation	9
		3.2.4 Performance Comparison for Uncoded Data Transmission 3	0
	3.3	Introduction to Turbo Equalization 3	1
	3.4	Summary and Conclusions	4
4	Арр	lying Turbo Equalization to MIMO Systems 3	7
	4.1	Single-Stage Scheme: Joint Frequency-Domain Turbo Equalizer 3	8
		4.1.1 The Feedforward Path: SISO FDE	8
		4.1.2 The Feedback Path: Soft Modulation and DFT 4	1
		4.1.3 Performance Evaluation of the Single-Stage Scheme 4	3

	4.2	Two-S	tage Scheme: Frequency-Domain Equalizer plus Time-	
		Doma	in MIMO Detection	45
		4.2.1	Extended Equalizer	45
		4.2.2	Noise Whitener and MIMO Detector	48
		4.2.3	Aspects of Iterations Scheduling	49
		4.2.4	Performance Evaluation of the Two-Stage Scheme	52
	4.3	Boosti	ng the Performance: Filter Normalization	61
		4.3.1	Biased vs. Unbiased MMSE Equalization	61
		4.3.2	Bias Reduction for the SISO FDE	64
		4.3.3	Performance Comparison in Low- and High-ISI Channels	65
	4.4	Comp	lexity Aspects of the SISO FDE	67
		4.4.1	Complexity Reduction by Splitting PIC Step into sepa-	
			rate IAI and ISI Cancellation Steps	67
		4.4.2	Complexity Reduction by Introducing a Stop Criterion	
			for Iterations	71
		4.4.3	Performance-Complexity Analysis with respect to Scal-	
			ability	73
	4.5	Summ	ary and Conclusions	74
5	Imn	lomont	ting SISO EDE for Application Specific Instruction	
5	Set 1	Droces	sors	77
	5 1	Implei	mentation Aspects of the selected SISO FDE Algorithm	77
	0.1	5.1.1	Algorithm Partitioning	79
		5.1.2	Algorithms for Matrix Inversion	84
		5.1.3	Fixed-Point Arithmetic	89
	5.2	Tensili	ica Xtensa LX5 Processor Architecture	90
		5.2.1	Processor Model	91
		5.2.2	Programming Aspects	93
		5.2.3	Simulation Environment and Development Tool	93
	5.3	Accele	erating SISO FDE by Application-Specific Instruction Set	
		Extens	sions	94
		5.3.1	Preliminary Considerations	96
		5.3.2	Instruction Set Extension: CPLX_DOT_PROD	99
		5.3.3	Instruction Set Extension: CPLX_FWD_SUBS 1	.07
			I. 1. 101 ' D	
	- 4	5.3.4	Interleaved Subcarrier Processing	.12
	5.4	5.3.4 Perfor	mance Evaluation and Implementation Results 1	.12 .14
	5.4	5.3.4 Perfor 5.4.1	mance Evaluation and Implementation Results 1 Speedup-Analysis	.12 .14 .14
	5.4	5.3.4 Perfor 5.4.1 5.4.2	Interfeaved Subcarrier Processing	.12 .14 .14 .16

	5.5	The Tomahawk4 Chip: An SDR MPSoC with Dedicated Turbo	
		Receiving	125
		5.5.1 Toplevel and Baseband Processing Module Description	126
		5.5.2 Energy-Efficiency of the LX5_FDE	129
	5.6	Summary and Conclusions	131
6	Con	clusions and Outlook	133
A	Pow	er Delay Profiles	137
B	Der	ivation of the Equalization Filters	139
	B.1	Linear MMSE Detection	140
	B.2	SISO FDE with arbitrary target channel	141
С	Deta	ails on Reduced Iteration Complexity based on CRC	145
D	Deta	ails on Matrix Inversion and Fixed-Point Implementation	147
	D.1	QR Decomposition using Gram-Schmidt orthogonalization	147
	D.2	Realization of Reciprocal Square Root Extraction	148
	D.3	Further Details on Fixed-Point Arithmetic of the SISO FDE $\ . \ .$	150
E	Para	allelism Analysis for the Matrix Multiplication	151
F	Ove	rview of TIE Instruction Set Extensions	153
Bi	bliog	raphy	157
Pu	blica	tions and Patents of the Author	169
Cu	Curriculum Vitae 171		171

List of Figures

2.1	Multipath propagation over a wireless channel	8
2.2	Continuous-time and discrete-time system view of the transmit-	
	ter, channel, and receiver.	11
2.3	Illustration of CP insertion	12
2.4	Block diagram of the transmitter for OFDM and SC-FDMA scheme.	13
2.5	Time-frequency grid of single-carrier and multi-carrier modula-	
	tion schemes.	16
2.6	Analysis of the overall mean channel tap power	18
2.7	Channel tap power analysis of the original N-length and the	
	effective M -length channel with respect to the channel scenarios	
	defined in Tab. 2.2	19
3.1	System model of the LTE-A uplink scenario for the generic MIMO	
	case	22
3.2	Overview of equalizer types	25
3.3	Effective time-domain system model including a linear filter for	
	equalizing the received signal	27
3.4	BER performance of different equalizers for BPSK modulated	
	symbols transmitted over a single-antenna frequency-selective	
	channel	31
3.5	Generalized turbo receiver with SISO detector/equalizer and	
	SISO decoder to generate LLR values	32
4.1	Effective frequency-domain system model including the SISO	
	FDE with a linear filter matrix and a feedback signal vector	38
4.2	Turbo receiver of the single-stage scheme for the t -th transmit	
	layer	42
4.3	FER performance comparison between of the single-stage SISO	
	FDE for the low-ISI and high-ISI channel scenario	44
4.4	Equivalent communications system model by using the intro-	
	duced target channel	46
4.5	Frequency-domain equalizer and time-domain MIMO detector	
	of the two-stage scheme.	48

4.6	Normalized noise covariance magnitudes, reflecting spatial noise	
	correlation at different receiving steps	49
4.7	Simplified block diagram of the multi-iterative receiver which	
	comprises up to three possible feedbacks	49
4.8	Tree graph of the possible iteration schedules. Each path from	
	root node to any other node in the tree describes a unique	
	iterations schedule.	51
4.9	Number of possible schedules in the multi-iterative receiver for	
	a given maximum latency constraint.	52
4.10	Simplified block diagrams of the receivers for both single-stage	
	(FDE) and two-stage scheme (FDE-TSD)	54
4.11	Channel impulse responses for two different channel scenarios.	54
4.12	FER performance comparison between single-stage and two-	
	stage schemes for the low-ISI channel scenario.	56
4.13	FER performance comparison between single-stage and two-	
	stage schemes for the high-ISI channel scenario	57
4.14	Node performance gains w.r.t. root node performance vs. the	
	corresponding node latencies.	59
4.15	Distribution of soft-modulated symbols for a 16-QAM.	63
4.16	Means of the equalizer output with (black) and without (gray)	
	normalization of 16-QAM symbols.	65
4.17	FER performance of the normalized single-stage scheme for the	
	low-ISI channel scenario	66
4.18	FER performance of the normalized single-stage scheme for the	
	high-ISI channel scenario.	66
4.19	Equivalent 3-step SISO FDE to equalize the <i>m</i> -th subcarrier of	
	the <i>t</i> -th transmit layer. Functional identical with single-stage	
	(2-step) SISO FDE in Fig. 4.2.	68
4.20	Complexity analysis of the SISO-FDE for different MIMO systems	
	according to Tab. 4.2	71
4.21	Iteration complexity analysis of normalized single-stage scheme	
	SISO FDE	72
4.22	Analysis of complexity and SNR performance of the SISO FDE	
	with respect to the MIMO setup and number of equalization-	
	decoding iterations	74
5.1	Qualitative classification of the architecture design space [Sch+05].	79
5.2	Signal flow chart of the partitioned SISO FDE algorithm.	80
5.3	Data dependency graph of the SISO FDE algorithm	83

5.4	Performance of the 16-bit fixed-point SISO FDE compared to
	floating-point
5.5	Simplified 5-stage ISA pipeline of the Tensilica Xtensa LX5 core.
	The highlighted blocks are design-defined blocks developed
	within this work and used to realize application specific ISA
	(see Section 5.3)
5.6	TIE design methodology: Design flow of the functional descrip-
	tion phase in Xtensa Xplorer (see user guide [Tenb]) 95
5.7	Generalized pipelined execution of a customized operation 96
5.8	Data dependency graph of the SISO FDE algorithm 98
5.9	Illustration of the suboperations of the partitioned SISO FDE
	algorithm 99
5.10	Functional unit CPLX_DOT_PROD to calculate the complex-
	valued dot product
5.11	TIE instruction CPLX_DOT_PROD implemented as 4-stage pipeline
	and used together with specific load and store instructions 103
5.12	Zigzag order of computing the elements and corresponding
	pseudo code. Each code line can be executed in one cycle. $\ . \ . \ 104$
5.13	Instruction pipeline to efficiently perform operations using the
	CPLX_DOT_PROD functional unit
5.14	TIE instruction CPLX_FWD_SUBS implemented as 4-stage pipeline
	and used together with specific load and store instructions 108
5.15	Instruction pipeline to efficiently perform operations using the
	CPLX_FWD_SUBS functional unit
5.16	Illustration of subcarrier processing
5.17	Average number of cycles required to operate on a single sub-
	carrier using interleaved processing
5.18	Cycles for equalizing a frequency-domain received vector on the
	LX5_FDE
5.19	TIE-related area breakdown of the LX5_FDE. The listed compo-
	nents in the chart correspond to an area of 0.29 mm^2 118
5.20	Throughput and latency of soft-input soft-output (SISO) frequency-
	domain equalizer (FDE) and soft-output (SO) FDE with respect
	to the number of interleaved subcarriers S
5.21	MPSoC block diagram and die photograph of the Tomahawk4. 126
5.22	Passed/failed table of the SISO FDE benchmark
5.23	Relative power and energy consumption of the LX5_FDE 129
5.24	Power consumption of the LX5_FDE multi-core approach for the
	target throughput of 500 Mbit/s

B.1	System model for the linear equalization without consideration
	of <i>a priori</i> information
B.2	System model of the FDE with consideration of a priori informa-
	tion
D.1	FER performance of the fixed-point SISO FDE for different num-
	bers of Newton-Raphson iterations, originally analyzed in [Pla14].
	The simulation setup (e.g., the channel scenario) is different to
	the one usually used in this thesis
E.1	Comparison between different parallelization approaches for
	DOT_PROD in terms of (pipelined) execution time 152

List of Tables

2.1	OFDM/SC-FDMA parameters as defined by 3rd Generation Part- nership Project (3GPP)	14
2.2	Two channel scenarios causing rather low or high amount of ISI. Due to localized subcarrier mapping (SCM), only $M < N$ frequency bins (subcarriers) are occupied	18
		10
4.1	Two best iterations schedules found among 52 schedule candi- dates, based on a setup identical to the one used in Section 4.2.4.	60
4.2	Number of complex-valued multiplications per subcarrier and iteration for the different algorithmic parts of the feedforward path.	70
	P	, .
5.1	Input and output variables of the frequency-domain SISO FDE to equalize the <i>m</i> -th subcarrier of a $T \times R$ multiple-input multiple-	
	output (MIMO) system.	80
5.2	Number of real-valued multiplications to determine the feedfor-	
	ward filter of the SISO FDE for a $T \times R$ MIMO system	88
5.3	Memory specification for the fixed-point SISO FDE with 4×4	~~
F 4		92
5.4	Proming results comparison of different software implementa- tions of a $A_{12}A_{12}$ matrix multiplication in $C_{12}(C_{12})$ (see also [De14])	
	tions of a 4×4 matrix multiplication in C/C++ (see also [Pia14]).	04
E E	Time and area regults of the different matrix multiplication	94
5.5	approaches Values in brackets refer to a filled nineline	01
56	Complexity of matrix multiplications expressed by the number	.01
5.0	of CPLX_DOT_PROD executions = 1	02
5.7	Context of state registers for forward/back substitution.	09
5.8	Context of state registers for Cholesky decomposition 1	10
5.9	Averaged number of cycles required to perform SISO FDE of	
	a single subcarrier on the LX5 FDE with (application-specific	
	instruction-set processor (ASIP)) and without (RISC) TIEs 1	16
5.10	Area results and comparison based on $65\mathrm{nm}$ low-power CMOS	
	process	17

5.11	Number of accumulated cycles when processing S subcarriers
	as well as corresponding throughput of LX5_FDE at $f_{\rm max}$ =
	$465\mathrm{MHz}$. Furthermore, 4×4 MIMO ($T = 4$) with 64 -QAM
	$(\mu = 6 \text{ bit})$ is assumed
5.12	Power consumption of the SISO FDE algorithm for power sup-
	ply $V_{\rm DD} = 1.25$ V and clock frequency $f = 294$ MHz 121
5.13	Efficiency metrics of the SISO FDE based on power and through-
	put results at $f = 294 \text{ MHz}$, $V_{\text{DD}} = 1.25 \text{ V}$. For LX5 (LX5_FDE)
	the throughput is $\bar{\tau} = 2.3 \text{ Mbit/s}$ ($\bar{\tau} = 39.9 \text{ Mbit/s}$) 122
5.14	Comparison of minimum mean square error (MMSE)-parallel in-
	terference cancellation (PIC)-based MIMO equalizers/detectors
	designs
5.15	Comparison between the 65nm logic synthesis results and the
	28nm T4 chip measurements. The number in brackets refer to
	the expected values when scaling down from 65nm to 28nm. 128
A.1	Two multipath delay profiles representing a low and high delay
	spread environment, respectively
C.1	Relative number of receiver runs for different channel scenarios
	and different number of equalization-decoding iterations #If 145
D.1	Fixed-point format of the input, output, and intermediate vari-
	ables. While W refers to the total bit-width, I refers only to the
	variable's integer part
Е 1	Time and area regults of the different matrix multiplication
E.1	approaches Bracket values refer to a filled nineline
	approaches. Dracket values refer to a fined pipeline 151
F.1	Calculation order of Cholesky decomposition
F.2	Overview of all implemented Tensilica instruction extension
	(TIE) instructions for controlling the two main functional units
	as well as accessing local memory
F.3	Helper TIE instructions for register initialization, configuration
	of barrel shifters, and fetching of lookup table (LUT) data 155

Abbreviations

3GPP	3rd Generation Partnership Project
4G	4th generation of mobile communication technology
5G	5th generation of mobile communication technology
ADC	analog-to-digital converter
ADPLL	all-digital phase-locked loop
ALU	arithmetic logic unit
APP	a posteriori probability
ASIC	application-specific integrated circuit
ASIP	application-specific instruction-set processor
ATE	area-timing-energy
AWGN	Additive white Gaussian noise
BER	bit error rate
BPSK	binary phase shift keying
CDMA	code-division multiple access
CFO	carrier frequency offset
CGRA	coarse-grained reconfigurable architecture
CMOS	complementary metal-oxide-semiconductor
CoMP	coordinated multi-point
СР	cyclic prefix

CQI	channel quality indicator
CRC	cyclic redundancy check
CSI	channel state information
DFE	decision feedback equalizer
DFT	discrete Fourier transform
DPU	data plane processing unit
DSP	digital signal processor
EPA	extended pedestrian A
ETU	extended typical urban
EVA	extended vehicular A
EXIT	extrinsic information transfer
FB	feedback
FDE	frequency-domain equalizer
FDMA	frequency-division multiple access
FEC	forward error correction
FER	frame error rate
FFT	fast Fourier transform
FLIX	flexible-length instruction extension
FPGA	field-programmable gate array
FU	functional unit
GE	gate equivalents
GFDM	generalized frequency-division multiplexing
GPP	general-purpose processor
i.i.d.	independent and identically distributed
IAI	inter-antenna interference
IC	integrated circuit

IDE	integrated development environment
IDFT	inverse DFT
IEEE	Institute of Electrical and Electronics Engineers
IFFT	inverse FFT
ICI	intercarrier interference
ІоТ	internet of things
ISA	instruction set architecture
ISI	intersymbol interference
ITU	International Telecommunication Union
LLR	log-likelihood ratio
LTE	Long-Term Evolution
LTE-A	LTE Advanced
LUT	lookup table
LX5	Tensilica Xtensa LX5
MAP	maximum a posteriori probability
MGS	modified Gram-Schmidt
MIMO	multiple-input multiple-output
MLD	maximum likelihood detection
MLSE	maximum likelihood sequence estimation
MMSE	minimum mean square error
MPSoC	multiprocessor system-on-a-chip
NoC	Network-on-Chip
NWF	noise whitening filter
OFDM	orthogonal frequency-division multiplexing
OFDMA	orthogonal frequency-division multiple access
PA	power amplifier

PAPR	peak-to-average-power ratio
PDF	probability density function
PDP	power delay profile
PE	processing element
PIC	parallel interference cancellation
РМ	processing module
QAM	quadrature amplitude modulation
RB	resource block
RISC	reduced instruction set computing
rms	root mean square
ROM	read-only memory
RTL	register-transfer level
SC-FDMA	single-carrier frequency-division multiple access
SCM	subcarrier mapping
SD	sphere detector
SDK	software development kit
SDR	software-defined radio
SIC	successive interference cancellation
SIMD	single instruction, multiple data
SIMO	single-input multiple-output
SINR	signal-to-interference-plus-noise ratio
SISO	soft-input soft-output
SLP	Super Low Power
SNR	signal-to-noise ratio
so	soft-output
STA	synchronous transfer architecture

T4	Tomahawk4
TDMA	time-division multiple access
TIE	Tensilica instruction extension
TSD	tuple-based SD
TSMC	Taiwan Semiconductor Manufacturing Company
VLIW	very large instruction word
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	wireless local area network
ZF	zero forcing

Notation and Symbols

Operators and Functions

$\mathbb{C}^{n \times m}$	set of complex numbers with dimensions $n\times m$
$\mathbb{R}^{n\times m}$	set of real numbers with dimensions $n\times m$
\approx	approximately equal
\in	element of
\subseteq	subset
\sum	summation of values
П	product of values
·	absolute value of (\cdot)
·	l^2 -norm (Euclidean norm)
$(\cdot)^{\mathrm{T}}$	transpose of a matrix
$(\cdot)^{\mathrm{H}}$	conjugate transpose of a matrix (hermitian)
$(\cdot)^{-1}$	inverse of a matrix
$(\cdot)_{(\cdot)_t=0}$	sets <i>t</i> -th entry of a vector to zero
$(\cdot)_{\mathrm{diag}(\cdot)=0}$	sets the diagonal entries of a matrix to zero
\otimes	Kronecker product
$\arg \max(\cdot)$	argument of the maximum of $\left(\cdot\right)$ over the set of
x	points x
$\arg\min(\cdot)$	argument of the minimum of $\left(\cdot\right)$ over the set of
x	points x
$\mathcal{CN}(0, \sigma_{n}^{2})$	zero-mean complex-valued normal distribution of
	variance $\sigma_{\rm n}^2$
$\operatorname{Cov}[\cdot]$	covariance matrix of a vector with random variable
$\mathrm{E}[\cdot]$	expected value of a random variable
$L(\cdot)$	log-likelihood ratio values of an estimated symbol $\left(\cdot\right)$
$P(\cdot)$	probability of event (\cdot)
$\operatorname{Var}[\cdot]$	variance of a random variable
$\operatorname{Im}\{\cdot\}$	imaginary part of $\{\cdot\}$

- maximum of $\{\cdot\}$ over the set of points ${\bf x}$
 - minimum of $\{\cdot\}$ over the set of points
- $\begin{array}{l} \max_{\mathbf{x}}\{\cdot\}\\ \min_{\mathbf{x}}\{\cdot\}\\ \operatorname{Re}\{\cdot\} \end{array}$ real part of $\{\cdot\}$

Symbols

$0_{n imes m}$	zero or null matrix
1_T	all-ones vector of length T
a_i	channel attenuation of path i
A	area of an integrated circuit
Α	intermediate matrix used for matrix inversion
$B_{\rm coh}$	coherence bandwidth
B_{s}	signal bandwidth
<u>b</u>	time-domain feedback signal vector
B	frequency-domain feedback signal vector
$\underline{\mathbf{B}}_{\mathrm{ISI}}$	portion of $\underline{\mathbf{B}}$ related to ISI
$\underline{\mathbf{B}}_{\mathrm{IAI}}$	portion of $\underline{\mathbf{B}}$ related to IAI
<u>c</u>	time-domain feedforward filter block matrix
$\underline{\mathbf{C}}$	frequency-domain feedforward filter block matrix
\mathbf{D}_t	subcarrier mapping matrix of t-th transmit antenna
E	energy dissipated by an integrated circuit
f	clock frequency
\mathbf{F}_N	N-point Fourier matrix
G	invertible $T \times T$ matrix
h(t)	continuous-time impulse response
h[n]	discrete-time impulse response
$h_{\rm ch}(t)$	h(t) of the propagation channel
$\underline{\vec{\mathbf{h}}}_{r,t}$	vector of channel impulse response between $t \mbox{ and } r$
$\underline{\mathbf{h}}_{r,t}'$	time-domain channel matrix between t and r
$\mathbf{\underline{h}}_{r,t}$	effective $\mathbf{\underline{h}}_{r,t}^{\prime}$, excludes non-occupied subcarriers
$\underline{\mathbf{H}}_{r,t}'$	frequency-domain channel matrix between t and r
$\underline{\mathbf{H}}_{r,t}$	effective $\underline{\mathbf{H}}_{r,t}'$, excludes non-occupied subcarriers
\mathbf{I}_N	identity matrix with dimensions $N \times N$
Ι	number of bits representing the integer part
J	cost function of the mean square error
K	number of subcarrier subsets with $K = M/S$
l	iteration level of the (multi-iterative) search tree
L	memory length of time-dispersive channel
\hat{L}_j	reciprocal values of diagonal elements $L_{j,j}$ in ${f L}$
\mathbf{L}	lower triangular matrix of Cholesky decomposition
m	time slot or subcarrier ($m \in \{1, 2,, M\}$)
M	number of occupied subcarriers
N	number of available subcarriers
$\underline{\mathbf{n}}_{r}^{\prime}$	time-domain noise vector at r-th receive antenna

$\underline{\mathbf{n}}_r$	effective \mathbf{n}_r' , excludes non-occupied subcarriers
$\underline{\mathbf{N}}_{r}^{\prime}$	frequency-domain noise vector at r-th receive an-
	tenna
$\underline{\mathbf{N}}_r$	effective $\mathbf{\underline{N}}_{r}^{\prime}$, excludes non-occupied subcarriers
P	number of pipeline stages per functional unit
r	receive layer ($r \in \{1, 2,, R\}$)
R	number of receiving antennas
S	number of grouped subcarriers (subcarrier set) with
	$S \leq M$
t	transmit layer ($t \in \{1, 2,, T\}$)
T	number of transmitting antennas
$T_{\rm d}$	delay spread of time-dispersive channel
T_{s}	symbol duration of a signal
u	source signal vector
v	encoded u
$V_{\rm DD}$	power supply voltage
W	time-domain NWF matrix
W	bit-width for fixed-point format (integer and frac-
	tional part)
x(t)	transmit signal
x_t	constellation symbol sent by t -th transmit antenna
\hat{x}_t	(hard) estimation of the symbol sent by t-th transmit
	antenna
\tilde{x}_t	equalized (soft) symbol sent by t-th transmit antenna
$\mathbf{\underline{x}}_{t}^{\prime}$	time-domain transmit symbol vector sent by t-th an-
	tenna
$\underline{\mathbf{x}}_t$	effective $\underline{\mathbf{x}}_{t}^{\prime}$, excludes non-occupied subcarriers
$\underline{\mathbf{X}}_t'$	frequency-domain transmit symbol vector sent by
	<i>t</i> -th antenna
$\underline{\mathbf{X}}_t$	effective $\underline{\mathbf{X}}_{t}^{\prime}$, excludes non-occupied subcarriers
y(t)	received signal
$\underline{\tilde{\mathbf{Y}}}_t$	IAI reduced frequency-domain received signal vector
	for <i>t</i> -th transmit antenna
$\underline{\mathbf{y}}_{r}^{\prime}$	time-domain received symbol vector at r-th antenna
$\underline{\mathbf{y}}_r$	effective \mathbf{y}'_r , excludes non-occupied subcarriers
$\underline{\mathbf{Y}}_{r}^{\prime}$	frequency-domain received symbol vector at r-th an-
	tenna
$\underline{\mathbf{Y}}_r$	effective $\underline{\mathbf{Y}}_{r}^{\prime}$, excludes non-occupied subcarriers

$\delta(t)$	Dirac delta function
η_i	relative number of the i -th receiver run (range $[0,1]$)
μ	number of bits per constellation symbol (2 ^µ -QAM
	modulation order)
$\sigma_{\rm n}^2$	noise variance
$\sigma_{\rm x}^2$	average transmit power per antenna (equal for all
	antennas)
$\sigma^2_{\hat{\mathbf{X}},t}$	mean variance of the estimated symbols of the t -th
	antenna
$ au_i$	propagation delay of path i or latency of node i
$\tau_{\rm max}$	maximum latency constraint
$\bar{\tau}$	(average) equalization throughput
ρ	code rate
Γ_{TM}	Kronecker product of I_T and F_M
Δf	subcarrier spacing
\mathcal{V}	set of binary codewords $\underline{\mathbf{v}}$
X	set of constellation symbols $\underline{\mathbf{x}}$

Introduction

Within less than two decades, mobile communication has changed our everyday life like only few other technical innovations before. While in the beginning, digital cellular networks focused on transmission of voice, mobile devices nowadays are particularly used for multimedia applications and data-intensive communication such as video streaming. Even though approximately half of the traffic is offloaded to WLAN fixed networks, the world's mobile data traffic is expected to increase in general by nearly 8-fold between 2015 and 2020 [Cis16]. By then, 75% of that traffic will be video, which demands for increasing requirements on the performance of modern mobile communication systems. Since spectrum is a highly-limited resource, sophisticated transmissions techniques like multiple-input multiple-output (MIMO) antennas have been introduced in modern wireless communication standards such as IEEE 802.16 (WiMAX), 3GPP LTE or LTE Advanced [Ahm14]. MIMO is a techniques for sending multiple data streams simultaneously over the same radio channel. Ideally, it scales the channel capacity linearly with the number of transmitting antennas. Due to signal coupling at the receiver side, the computation effort for detecting the signal streams has drastically increased.

Besides throughput and transmission reliability, which can be improved by MIMO techniques as well, energy-efficiency has become of utmost importance. This demand is not only driven by cell phone users, but by emerging application trends and markets like internet of things (IoT), where different types of wireless sensor devices are connected to the mobile internet. Especially in the uplink, where data is transmitted from the battery-driven mobile device to the base station, it is important to reduce the transmit signal power. Also the dynamic range of the signal should be small to allow the power amplifier to operate more efficiently and to reduce the overall energy consumption. Regarding this, single-carrier modulation leads to much lower peak-to-average-power ratios than multi-carrier modulation¹, which is why it was deployed in the 3GPP LTE/LTE-A uplink. However, multipath propagation in combination with single-carrier transmission creates temporal

¹Multi-carrier modulation mostly refers to orthogonal frequency-division multiplexing (OFDM), which is a spectrally-efficient method to allocate data on multiple carrier frequencies.

coupling between the symbols at the receiver side. This is also known as intersymbol interference (ISI). The larger the bandwidth², the stronger the coupling, which makes especially wideband transmission very susceptible to ISI. Furthermore, possible future transmission scheme candidates, such as generalized frequency-division multiplexing (GFDM), do no longer guarantee orthogonality between subcarriers. As a consequence, another type of interference, referred to as intercarrier interference (ICI), might be considered in the receiving processing.

To tackle all these kinds of occurring interferences, modern wireless receivers hence require an *equalizer* as essential component. The designs for such equalizers are usually based on dedicated hardware to fulfill high throughput requirements. On the other hand, the variety of existing wireless standards impose high demands on the compatibility and flexibility of modern receivers. Consequently, to support these different standards with common hardware resources, application-specific but still programmable realizations have become more and more attractive.

1.1 Scope and Outline

In 1995, Douillard and Berrou proposed an iterative procedure for correcting ISI [Dou+95]. Since this procedure was the direct application of turbo codes to an equalizer, it was then called *turbo equalization*. At the same time, it could be demonstrated [SKJ94; Czy97] that single-carrier modulation provides a performance-complexity trade-off similar to multi-carrier OFDM by making use of linear frequency-domain equalization (FDE). In the following years, FDE has hence become a promising equalization approach also in non-linear iterative schemes [BT05; SAS06]. When MIMO techniques came up, new sophisticated time-domain detection methods like tree-search detection [SB10] were developed to effectively benefit from spatial diversity. However, these concepts, even though combined with iterative detectiondecoding, have mostly not taken ISI into account but assumed MIMO-OFDM channels only.

This work tries to overcome the separated views and hence investigate communications systems characterized by encoded data transmission over frequency-selective MIMO channels. The focus of the thesis is on receiver

²In LTE-A, subcarrier aggregation enables up to 100 MHz bandwidth [Ahm14].

schemes that generate very reliable estimation results or provide high communication performance. Regarding this, turbo equalization is considered to be the key technique towards this performance. The question arises about how to apply turbo equalization to MIMO systems that suffer from inter-antenna interference (IAI) and ISI? Furthermore, is it still possible and beneficial to use sophisticated MIMO detection methods at feasible complexity? The work investigates the considered schemes from both an algorithmic and implementation perspective. It hence also covers design issues that arise when aiming for a high-performing *and* programmable solution. The remainder of the thesis is organized as follows:

- Chapter 2 provides background information about the phenomenon of classical multipath propagation and how to model the frequencyselective channels. The transmissions schemes for 3GPP LTE/LTE Advanced are introduced, especially with focus on single-carrier transmission in the uplink. The chapter concludes with a detailed analysis of the channel impulse responses, taking different power delay profiles and bandwidth assumptions into account.
- Chapter 3 introduces the encoded communications system model for a generic MIMO setup. An overview about existing equalization and detection methods for those systems is presented, ranging from linear equalization to optimal maximum *a posteriori* probability (MAP) decoding. The concept of turbo receiving to approximate MAP receivers is also introduced.
- Chapter 4 extends turbo equalization to MIMO transmission. The channel equalization is performed jointly in the frequency-domain. Subsequently, a multi-iterative receiver scheme, that comprises two stages to specifically address different types of interference, is proposed. It is further demonstrated that normalization of the equalization filter tremendously enhances the communications performance. The chapter concludes with a detailed performance-complexity investigation for different MIMO setups.
- Chapter 5 focuses on the hardware implementation of the selected softinput soft-output FDE running on an application-specific instruction-set processor (ASIP). For this purpose, the equalization algorithm is firstly prepared for low-cost implementation. The subsequent part develops additional hardware features that can be integrated for accelerating the

execution. Besides synthesis results, measurement results of a silicon implementation of the ASIP are finally presented.

Chapter 6 summarizes the key results of the thesis and gives an outlook about future research topics.

1.2 Notation

The following section gives an overview about important notation used within the thesis. An important remark concerns the distinction between frequencydomain and time-domain values, which is essential to improve clarity of formulas. Any further notations can be looked up in the detailed notation list, starting on page xxv.

- Unless otherwise stated, the used variables x are generally complex-valued, i.e., $x \in \mathbb{C}.$
- Italic characters (e.g., *x*, *X*) indicate scalar variables or constants. Bold characters (e.g., **x**, **X**) always represent vectors or matrices. Hereby, *x_i* identifies the *i*-th element of the vector. If **x** is a matrix, *x_{jk}* identifies the element placed in the *j*-th row and *k*-th column.
- Vectors and matrices that refer to an *M*-length SC-FDMA symbol are additionally underlined, e.g., <u>x</u>. The dimension length of those vectors and matrices is always an integer multiple of *M*.
- SC-FDMA related vectors and matrices are represented either in time- or frequency-domain. Lower case vectors or matrices (e.g., <u>x</u>, <u>h</u>) indicate time-domain representation. Upper case vectors or matrices (e.g., <u>X</u>, <u>H</u>) indicate frequency-domain representation.
- SC-FDMA related vectors are often stacked subvectors. While $\underline{\mathbf{x}}_j$ addresses the *j*-th subvector, $\mathbf{x}[m]$ composes a vector based on the *m*-th elements of all subvectors. To address a scalar in the stacked vector, $x_j[m]$ is used. Note that the underline has been removed since the latter two examples do not refer to a complete SC-FDMA symbol anymore, but to a single time slot or subcarrier *m*.

- SC-FDMA related matrices are often block matrices. To address the submatrix in the *j*-th row and *k*-th column, the notation the <u>H</u>_{j,k} is used. To extract a matrix composed of the *m*-th diagonal element of all submatrices, the notation H[*m*] is used.
- H^H and H^T denote the hermitian and transpose of a matrix/vector H, respectively. H⁻¹ denotes the inverse of the squared matrix H.
- **F**_M and **F**^H_M are the Fourier matrix of an *M*-point DFT and the inverse Fourier matrix of an *M*-point IDFT, respectively.

5