
Turbo Receivers for Equalizing
Frequency­Selective MIMO Channels:

Algorithms and Implementations

Tobias Seifert

Beiträge aus der Informationstechnik

Dresden 2017

Mobile Nachrichtenübertragung
Nr. 87



Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the
Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2017

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„ Turbo Receivers for Equalizing Frequency­Selective MIMO Channels:
Algorithms and Implementations“ von Tobias Seifert überein.

© Jörg Vogt Verlag 2017
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978­3­95947­023­0

Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49­(0)351­31403921
Telefax: +49­(0)351­31403918
e­mail: info@vogtverlag.de
Internet : www.vogtverlag.de



Technische Universität Dresden

Turbo Receivers for Equalizing

Frequency-Selective MIMO Channels:

Algorithms and Implementations

Tobias Seifert

von der Fakultät Elektrotechnik und Informationstechnik
der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr. rer. nat. Stefan Mannsfeld

Gutachter: Prof. Dr.-Ing. Dr. h.c. Gerhard P. Fettweis

Prof. Dr. sc.techn. Andreas Herkersdorf

Tag der Einreichung: 03. Februar 2017

Tag der Verteidigung: 30. Mai 2017





Abstract

Received signals of modern wireless communications systems are impaired

by temporal and spatial interferences between the symbols. Consequently, a

sophisticated equalizer is required as an essential component of the receiver.

When a priori knowledge based on decoder results is taken into account in

the equalization procedure, interference can be reduced more efficiently than

in conventional low-complex receivers. These schemes are referred to as

turbo equalization.

This work focuses on turbo receiver schemes to equalize frequency-selective

MIMO channels, which introduces intersymbol interference (ISI) and inter-

antenna interference (IAI). The thesis is divided into two parts: The first

part (Chapter 4) investigates different MMSE-based algorithms in terms of

communications performance and computational complexity. In this context,

a novel multi-iterative turbo receiver is proposed to enable interference-

aware receiving with respect to the given channel scenario. It is furthermore

shown, that normalizing the filter coefficients reduces the equalization bias

and improves significantly the reliability of the transmission. The second

part (Chapter 5) demonstrates an implementation of the developed algo-

rithm based on a programmable solution. The equalizer application has been

profiled whereas matrix inversion was identified as the most computational

intensive operation. Starting from a RISC processor instruction set architec-

ture, new equalizer-specific functional units (FUs) have been developed and

integrated in order to accelerate both non-recursive and recursive operations.

The design was optimized towards high area-efficiency, thus increasing the

performance throughput with reasonable low additional hardware effort. In

contrast to ASIC implementations, the resulting ASIP core enables very high

flexibility to support different equalizer modes along with moderate to high

performance.
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Kurzfassung

Wichtiger Bestandteil gegenwärtiger und zukünftiger Mobilfunksysteme ist

die Verwendung mehrerer Sende- und Empfangsantennen, die auf Empfangs-

seite zu räumlicher Überlagerung der Sendesignale führen. In Verbindung

mit Mehrwegeausbreitung sind diese Signale zusätzlich von sogenannter

zeitlicher Intersymbol-Interferenz geprägt. Zur Auflösung der Interferenzen

benötigt es einen Entzerrer als zentrale Verarbeitungskomponente. Die vor-

liegende Arbeit beschäftigt sich mit iterativen Empfängerstrukturen, auch

Turbo-Empfänger genannt, die einen signifikanten Leistungsgewinn der Über-

tragungszuverlässigkeit ermöglichen. Dabei werden neuartige, mehrfach-

iterative Konzepte vorgestellt und sowohl hinsichtlich ihrer algorithmischen

Komplexität als auch ihrer Leistungsfähigkeit untersucht. Neben algorith-

mischen Betrachtungen stehen insbesondere effiziente Implementierungen

auf Basis einer erweiterten Befehlssatzarchitektur zur Beschleunigung der

Kernoperationen des Entzerrers im Fokus dieser Arbeit.
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FPGA field-programmable gate array

FU functional unit

GE gate equivalents

GFDM generalized frequency-division multiplexing

GPP general-purpose processor

i.i.d. independent and identically distributed

IAI inter-antenna interference

IC integrated circuit
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IDE integrated development environment

IDFT inverse DFT

IEEE Institute of Electrical and Electronics Engineers

IFFT inverse FFT

ICI intercarrier interference

IoT internet of things

ISA instruction set architecture

ISI intersymbol interference

ITU International Telecommunication Union

LLR log-likelihood ratio

LTE Long-Term Evolution

LTE-A LTE Advanced

LUT lookup table

LX5 Tensilica Xtensa LX5

MAP maximum a posteriori probability

MGS modified Gram-Schmidt

MIMO multiple-input multiple-output

MLD maximum likelihood detection

MLSE maximum likelihood sequence estimation

MMSE minimum mean square error

MPSoC multiprocessor system-on-a-chip

NoC Network-on-Chip

NWF noise whitening filter

OFDM orthogonal frequency-division multiplexing

OFDMA orthogonal frequency-division multiple access

PA power amplifier
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PAPR peak-to-average-power ratio

PDF probability density function

PDP power delay profile

PE processing element

PIC parallel interference cancellation

PM processing module

QAM quadrature amplitude modulation

RB resource block

RISC reduced instruction set computing

rms root mean square

ROM read-only memory

RTL register-transfer level

SC-FDMA single-carrier frequency-division multiple access

SCM subcarrier mapping

SD sphere detector

SDK software development kit

SDR software-defined radio

SIC successive interference cancellation

SIMD single instruction, multiple data

SIMO single-input multiple-output

SINR signal-to-interference-plus-noise ratio

SISO soft-input soft-output

SLP Super Low Power

SNR signal-to-noise ratio

SO soft-output

STA synchronous transfer architecture
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TDMA time-division multiple access
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Notation and Symbols

Operators and Functions

C
n×m set of complex numbers with dimensions n × m

R
n×m set of real numbers with dimensions n × m

≈ approximately equal

∈ element of

⊆ subset
∑

summation of values
∏

product of values

| · | absolute value of (·)
‖ · ‖ l2-norm (Euclidean norm)

(·)T transpose of a matrix

(·)H conjugate transpose of a matrix (hermitian)

(·)−1 inverse of a matrix

(·)(·)t=0 sets t-th entry of a vector to zero

(·)diag(·)=0 sets the diagonal entries of a matrix to zero

⊗ Kronecker product

arg max
x

(·) argument of the maximum of (·) over the set of

points x

arg min
x

(·) argument of the minimum of (·) over the set of

points x

CN (0, σ2
n) zero-mean complex-valued normal distribution of

variance σ2
n

Cov[·] covariance matrix of a vector with random variable

E[·] expected value of a random variable

L(·) log-likelihood ratio values of an estimated symbol (·)
P(·) probability of event (·)
Var[·] variance of a random variable

Im{·} imaginary part of {·}
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max
x

{·} maximum of {·} over the set of points x

min
x

{·} minimum of {·} over the set of pointsx

Re{·} real part of {·}
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Symbols

0n×m zero or null matrix

1T all-ones vector of length T

ai channel attenuation of path i

A area of an integrated circuit

A intermediate matrix used for matrix inversion

Bcoh coherence bandwidth

Bs signal bandwidth

b time-domain feedback signal vector

B frequency-domain feedback signal vector

BISI portion of B related to ISI

BIAI portion of B related to IAI

c time-domain feedforward filter block matrix

C frequency-domain feedforward filter block matrix

Dt subcarrier mapping matrix of t-th transmit antenna

E energy dissipated by an integrated circuit

f clock frequency

FN N -point Fourier matrix

G invertible T × T matrix

h(t) continuous-time impulse response

h[n] discrete-time impulse response

hch(t) h(t) of the propagation channel
~hr,t vector of channel impulse response between t and r

h′
r,t time-domain channel matrix between t and r

hr,t effective h′
r,t, excludes non-occupied subcarriers

H′
r,t frequency-domain channel matrix between t and r

Hr,t effective H′
r,t, excludes non-occupied subcarriers

IN identity matrix with dimensions N × N

I number of bits representing the integer part

J cost function of the mean square error

K number of subcarrier subsets with K = M/S

l iteration level of the (multi-iterative) search tree

L memory length of time-dispersive channel

L̂j reciprocal values of diagonal elements Lj,j in L

L lower triangular matrix of Cholesky decomposition

m time slot or subcarrier (m ∈ {1, 2, ..., M})

M number of occupied subcarriers

N number of available subcarriers

n′
r time-domain noise vector at r-th receive antenna
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nr effective n′
r, excludes non-occupied subcarriers

N′
r frequency-domain noise vector at r-th receive an-

tenna

Nr effective N′
r, excludes non-occupied subcarriers

P number of pipeline stages per functional unit

r receive layer (r ∈ {1, 2, ..., R})

R number of receiving antennas

S number of grouped subcarriers (subcarrier set) with

S ≤ M

t transmit layer (t ∈ {1, 2, ..., T})

T number of transmitting antennas

Td delay spread of time-dispersive channel

Ts symbol duration of a signal

u source signal vector

v encoded u

VDD power supply voltage

w time-domain NWF matrix

W bit-width for fixed-point format (integer and frac-

tional part)

x(t) transmit signal

xt constellation symbol sent by t-th transmit antenna

x̂t (hard) estimation of the symbol sent by t-th transmit

antenna

x̃t equalized (soft) symbol sent by t-th transmit antenna

x′
t time-domain transmit symbol vector sent by t-th an-

tenna

xt effective x′
t, excludes non-occupied subcarriers

X′
t frequency-domain transmit symbol vector sent by

t-th antenna

Xt effective X′
t, excludes non-occupied subcarriers

y(t) received signal

Ỹt IAI reduced frequency-domain received signal vector

for t-th transmit antenna

y′
r

time-domain received symbol vector at r-th antenna

y
r

effective y′
r
, excludes non-occupied subcarriers

Y′
r frequency-domain received symbol vector at r-th an-

tenna

Yr effective Y′
r, excludes non-occupied subcarriers
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δ(t) Dirac delta function

ηi relative number of the i-th receiver run (range [0, 1])

µ number of bits per constellation symbol (2µ-QAM

modulation order)

σ2
n noise variance

σ2
x average transmit power per antenna (equal for all

antennas)

σ2
X̂,t

mean variance of the estimated symbols of the t-th

antenna

τi propagation delay of path i or latency of node i

τmax maximum latency constraint

τ̄ (average) equalization throughput

ρ code rate

ΓT M Kronecker product of IT and FM

∆f subcarrier spacing

V set of binary codewords v

X set of constellation symbols x
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1Introduction

Within less than two decades, mobile communication has changed our ev-

eryday life like only few other technical innovations before. While in the

beginning, digital cellular networks focused on transmission of voice, mo-

bile devices nowadays are particularly used for multimedia applications and

data-intensive communication such as video streaming. Even though approx-

imately half of the traffic is offloaded to WLAN fixed networks, the world’s

mobile data traffic is expected to increase in general by nearly 8-fold between

2015 and 2020 [Cis16]. By then, 75 % of that traffic will be video, which

demands for increasing requirements on the performance of modern mobile

communication systems. Since spectrum is a highly-limited resource, sophis-

ticated transmissions techniques like multiple-input multiple-output (MIMO)

antennas have been introduced in modern wireless communication standards

such as IEEE 802.16 (WiMAX), 3GPP LTE or LTE Advanced [Ahm14]. MIMO

is a techniques for sending multiple data streams simultaneously over the

same radio channel. Ideally, it scales the channel capacity linearly with the

number of transmitting antennas. Due to signal coupling at the receiver

side, the computation effort for detecting the signal streams has drastically

increased.

Besides throughput and transmission reliability, which can be improved by

MIMO techniques as well, energy-efficiency has become of utmost impor-

tance. This demand is not only driven by cell phone users, but by emerging

application trends and markets like internet of things (IoT), where differ-

ent types of wireless sensor devices are connected to the mobile internet.

Especially in the uplink, where data is transmitted from the battery-driven

mobile device to the base station, it is important to reduce the transmit

signal power. Also the dynamic range of the signal should be small to allow

the power amplifier to operate more efficiently and to reduce the overall

energy consumption. Regarding this, single-carrier modulation leads to much

lower peak-to-average-power ratios than multi-carrier modulation1, which

is why it was deployed in the 3GPP LTE/LTE-A uplink. However, multipath

propagation in combination with single-carrier transmission creates temporal

1Multi-carrier modulation mostly refers to orthogonal frequency-division multiplexing
(OFDM), which is a spectrally-efficient method to allocate data on multiple carrier
frequencies.
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coupling between the symbols at the receiver side. This is also known as

intersymbol interference (ISI). The larger the bandwidth2, the stronger the

coupling, which makes especially wideband transmission very susceptible to

ISI. Furthermore, possible future transmission scheme candidates, such as

generalized frequency-division multiplexing (GFDM), do no longer guarantee

orthogonality between subcarriers. As a consequence, another type of inter-

ference, referred to as intercarrier interference (ICI), might be considered in

the receiving processing.

To tackle all these kinds of occurring interferences, modern wireless receivers

hence require an equalizer as essential component. The designs for such

equalizers are usually based on dedicated hardware to fulfill high throughput

requirements. On the other hand, the variety of existing wireless standards

impose high demands on the compatibility and flexibility of modern receivers.

Consequently, to support these different standards with common hardware re-

sources, application-specific but still programmable realizations have become

more and more attractive.

1.1 Scope and Outline

In 1995, Douillard and Berrou proposed an iterative procedure for correcting

ISI [Dou+95]. Since this procedure was the direct application of turbo codes

to an equalizer, it was then called turbo equalization. At the same time, it

could be demonstrated [SKJ94; Czy97] that single-carrier modulation pro-

vides a performance-complexity trade-off similar to multi-carrier OFDM by

making use of linear frequency-domain equalization (FDE). In the follow-

ing years, FDE has hence become a promising equalization approach also

in non-linear iterative schemes [BT05; SAS06]. When MIMO techniques

came up, new sophisticated time-domain detection methods like tree-search

detection [SB10] were developed to effectively benefit from spatial diversity.

However, these concepts, even though combined with iterative detection-

decoding, have mostly not taken ISI into account but assumed MIMO-OFDM

channels only.

This work tries to overcome the separated views and hence investigate

communications systems characterized by encoded data transmission over

frequency-selective MIMO channels. The focus of the thesis is on receiver

2In LTE-A, subcarrier aggregation enables up to 100 MHz bandwidth [Ahm14].
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schemes that generate very reliable estimation results or provide high commu-

nication performance. Regarding this, turbo equalization is considered to be

the key technique towards this performance. The question arises about how

to apply turbo equalization to MIMO systems that suffer from inter-antenna

interference (IAI) and ISI? Furthermore, is it still possible and beneficial to

use sophisticated MIMO detection methods at feasible complexity? The work

investigates the considered schemes from both an algorithmic and implemen-

tation perspective. It hence also covers design issues that arise when aiming

for a high-performing and programmable solution. The remainder of the

thesis is organized as follows:

⊲ Chapter 2 provides background information about the phenomenon

of classical multipath propagation and how to model the frequency-

selective channels. The transmissions schemes for 3GPP LTE/LTE Ad-

vanced are introduced, especially with focus on single-carrier transmis-

sion in the uplink. The chapter concludes with a detailed analysis of

the channel impulse responses, taking different power delay profiles

and bandwidth assumptions into account.

⊲ Chapter 3 introduces the encoded communications system model for

a generic MIMO setup. An overview about existing equalization and

detection methods for those systems is presented, ranging from linear

equalization to optimal maximum a posteriori probability (MAP) decod-

ing. The concept of turbo receiving to approximate MAP receivers is

also introduced.

⊲ Chapter 4 extends turbo equalization to MIMO transmission. The

channel equalization is performed jointly in the frequency-domain.

Subsequently, a multi-iterative receiver scheme, that comprises two

stages to specifically address different types of interference, is proposed.

It is further demonstrated that normalization of the equalization filter

tremendously enhances the communications performance. The chapter

concludes with a detailed performance-complexity investigation for

different MIMO setups.

⊲ Chapter 5 focuses on the hardware implementation of the selected soft-

input soft-output FDE running on an application-specific instruction-set

processor (ASIP). For this purpose, the equalization algorithm is firstly

prepared for low-cost implementation. The subsequent part develops

additional hardware features that can be integrated for accelerating the
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execution. Besides synthesis results, measurement results of a silicon

implementation of the ASIP are finally presented.

⊲ Chapter 6 summarizes the key results of the thesis and gives an outlook

about future research topics.

1.2 Notation

The following section gives an overview about important notation used within

the thesis. An important remark concerns the distinction between frequency-

domain and time-domain values, which is essential to improve clarity of

formulas. Any further notations can be looked up in the detailed notation

list, starting on page xxv.

• Unless otherwise stated, the used variables x are generally complex-

valued, i.e., x ∈ C.

• Italic characters (e.g., x, X) indicate scalar variables or constants. Bold

characters (e.g., x, X) always represent vectors or matrices. Hereby, xi

identifies the i-th element of the vector. If x is a matrix, xjk identifies

the element placed in the j-th row and k-th column.

• Vectors and matrices that refer to an M -length SC-FDMA symbol are

additionally underlined, e.g., x. The dimension length of those vectors

and matrices is always an integer multiple of M .

• SC-FDMA related vectors and matrices are represented either in time- or

frequency-domain. Lower case vectors or matrices (e.g., x, h) indicate

time-domain representation. Upper case vectors or matrices (e.g., X,

H) indicate frequency-domain representation.

• SC-FDMA related vectors are often stacked subvectors. While xj ad-

dresses the j-th subvector, x[m] composes a vector based on the m-th

elements of all subvectors. To address a scalar in the stacked vector,

xj[m] is used. Note that the underline has been removed since the latter

two examples do not refer to a complete SC-FDMA symbol anymore,

but to a single time slot or subcarrier m.
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• SC-FDMA related matrices are often block matrices. To address the

submatrix in the j-th row and k-th column, the notation the Hj,k is

used. To extract a matrix composed of the m-th diagonal element of all

submatrices, the notation H[m] is used.

• HH and HT denote the hermitian and transpose of a matrix/vector H,

respectively. H-1 denotes the inverse of the squared matrix H.

• FM and FH
M are the Fourier matrix of an M -point DFT and the inverse

Fourier matrix of an M -point IDFT, respectively.
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