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ABSTRACT

The advent of 5G technologies and Internet-of-Things (IoT) applications is pushing the
annual information and communication growth rate upwards of 8%. Such a startling surge
in the amount of information is putting power and performance limitations on each aspect
of communication infrastructure. In the framework of hardware design, for both cellular as
well as short-haul serial links, transceiver circuits are being developed to achieve highest
possible energy efficiency. Transceiver circuits primarily consist of analog RF front end blocks
and data converters, which convert the digital information into an analog waveform and vice
versa. Conventionally, the data converter on the transmit-side of the link translates the digital
data into the amplitude of an analog waveform. And the receive-side data converter simply
decodes this amplitude information back into digital data. In scaled CMOS technologies,
however, such amplitude-domain data converters suffer dynamic range degradation since they
are forced to operate at lower supply voltages for device breakdown considerations, thereby
deteriorating the noise figure of the entire link. To address this scaling-caused noise figure
degradation issue, encoding the digital information in a time variable, instead of an amplitude
variable, on the transmit-side, and subsequently, performing quantization in time domain on
the receive-side is one promising option. This work presents several time-domain energy-
efficient transmit- and receive-side data converters in 45-nm SOI CMOS node.

A unique high oversampling input-delayed delay-line based receive-side data converter
is first presented. This highly scalable multi-standard adaptable data converter architecture
digitizes transitions/threshold crossings and inter-transition distances inside any time-domain
binary input symbol sequence. The circuit works by sampling delayed replicas of a threshold-
crossing binary input symbol sequence inside a differential delay-line. The resulting sampled
digital word carries information of the threshold-crossings and the distances between them. The
delay-line data converter has been designed and demonstrated to oversample any time-domain
analog waveform data with the best reported power efficiency of 1.62 pJ/bit. To minimize the
jitter, the design of the delay-element, used inside the delay-line of the data converter, as a
Bessel filter is detailed and mathematical models for random and deterministic jitter inside the
delay-line are developed. In addition, several active and passive bandwidth extension schemes
are analyzed and their simulations are presented. Independent design and characterization
of a digitally-tunable delay-element with the best reported time-resolution of 1.25 ps is also
provided. For the purpose of delay-stabilization of the delay-line, the design and measure-



vi

ments of a wide-locking-range, 0.7-5 GHz, replica delay-line based delay-locked-loop (DLL)
is also reported. One design version of this unique delay-line based data converter has also
been demonstrated to function as a time-to-digital converter (TDC) with highest reported
double hit resolution of 250 ps. Another version was designed and characterized as a 1:4
demultiplexer (Demux). Its comparison with other inductor-less 1:4 Demux designs shows the
best achieved energy efficiency of 2.6 pJ/bit. In short, the presented delay-line based architec-
ture has not only been demonstrated to work as a time-domain receive-side oversampling data

converter but has also been proved to possess several other signal processing functionality.

Next, controlled capacitor charge/discharge based unique pulsewidth modulator (PWM)
and de-modulator (PWDM) are presented. This PWM modulator works by controlling the dis-
charge rate of a capacitor. The designed PWM modulator consists primarily of a 2-bit current-
steering digital-to-analog converter (DAC) and a voltage-to-time converter (VTC). The VTC
operates in two phases. First phase requires the capacitor to be charged to the supply rail, while
the second phase discharges the capacitor using the control voltage generated by the DAC. The
rate of the capacitor discharge defines the width of the output PWM pulse. The proposed
PWM modulator is demonstrated to achieve data rates upto 10 Gb/s and a record energy
efficiency of 0.9 plJ/bit. The complementary PWDM consists of a time-to-voltage converter
(TVC) and a 2-bit analog-to-digital converter (ADC). TVC operates in the charge phase and
the discharge phase. During the charge phase an input pulsewidth-modulated (PWM) signal
charges a capacitor to a certain value. The larger the width of the PWM signal, the higher the
voltage developed across the charged capacitor. This capacitor voltage, which is unique to each
pulsewidth, is then digitized inside a 2-bit ADC. During the discharge phase, the capacitor is
allowed to completely discharge to ground. The PWDM is demonstrated to achieve the best
reported energy efficiency of 0.93 pl/bit.

Finally, the tree-architecture based 4:1 multiplexer (Mux) and 1:4 Demux are designed and
characterized. For the design of the latch, which is used primarily inside the key building
blocks of the Mux and Demux, a power-speed optimized current-scaling methodology is
provided. The results of an electromagnetic (EM) 3D field solver, which was used to simulate
the high-frequency performance of the most critical data and clock paths inside the Mux and
the Demux, are presented. In addition, a novel delay-line based highly scalable all-CMOS 16:1
Mux is presented and its simulations are provided. The design and analysis of this 25 Gb/s
architecture shows that this delay-line Mux achieves an energy efficiency of only 160 fJ/bit, a
near 10x improvement over the recently reported Muxes.

The time-domain converter circuits discussed in this thesis including the input-sampled
delay-line data converter and its variants, PWM/PWDM and Mux/Demux circuit blocks present
several novel circuit techniques and have been demonstrated to improve the state-of-the-art.
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Sami Ur Rehman

Die neuen 5G-Technologien und Internet-of-Things (IoT) Anwendungen fithren zu Wach-
stumsraten des iibertragenen Informationsvolumens von bis zu 8 % jihrlich. Diese Entwiklung
setzt neue Grenzen fiir die Infrastrukturen der existierenden Dateniibertragungsnetze. Im Rah-
men des Hardware-Designs werden sowohl fiir zellulare als auch fiir serielle Kurzstreckenver-
bindungen Transceiverschaltungen entwickelt, um eine hochstméogliche Energieeffizienz zu
erreichen. Die Transceiver-Schaltungen bestehen im Wesentlichen aus analogen RF-Frontend
Blocken und Datenwandlern, die die digitalen Daten in analoge Signale umwandeln und
umgekehrt. In den konventionellen Systemen konvertiert der Datenwandler auf der Sender-
seite der Verbindung die digitale Information in ein analoges Signal mit einer entsprechenden
Amplitude um. Auf der Empfingerseite wird diese Amplitudeninformation zuriick in digitale
Daten umgewandelt. Allerdings weisen die Datenwandler in skalierten CMOS-Technologien
Einschrankungen aufgrund des Aussteuerbereiches auf, da sie wegen begrenzter Durchbruch-
spannungen mit niedrigen Spannungen versorgt werden miissen. Somit wird die Rauschzahl
des gesamten Netzwerkes beeintrichtigt. Eine Moglichkeit, dieses Problem zu beheben, ist
die Umwandlung der Information auf der Empfingerseite in eine Zeit-Variable statt eine
Amplituden-Variable. In dieser Arbeit werden mehrere energieeffiziente Zeitbereichsdaten-
wandler sowohl auf der Empfénger-, als auch auf der Senderseite in einem skalierten CMOS-

Prozess entworfen.
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Zuniéchst wird auf Empfangerseite ein eingangsseitig verzogerter Datenwandler mit hoher
Uberabtastung prisentiert, welcher auf einer Kette von Verzogerungsgliedern basiert. Diese
hoch skalierbare, adaptive Multistandard-Datenwandlerarchitektur digitalisiert sowohl Schwel-
len und Schwelleniiberginge als auch Abstinde zwischen verschiedenen Ubergingen fiir be-
liebige bindre Eingangssequenzen. Die Schaltung tastet verzogerte Kopien einer schwellen-
iiberquerenden Bitsequenz innerhalb einer differentiellen Verzogerungsleitung ab. Das res-
ultierende digitale Wort triagt Informationen zu den Schwelleniibergingen sowie zu deren
Abstinden untereinander. Der verzogerungsleitungsbasierte Datenwandler kann jegliche Zeit-
bereichswellenform mit einer Energieeffizienz von 1,62 pJ/Bit liberabtasten, was hinsichtlich
des aktuellen Stands der Technik einen Rekord darstellt. Um Jitter zu minimieren, wurde das
verwendete, Bessel-Filter basierte Verzogerungselement innerhalb der Verzogerungsleitung
sorgfiltig modelliert und entworfen. Auierdem wurden Methoden zur Erweiterung der Band-
breite analysiert und die entsprechenden Simulationsergebnisse vorgestellt. Dariiber hinaus
wurde ein digital steuerbares Verzogerungselement mit einer Zeitauflosung von 1,25 ps ent-
worfen und charakterisiert, was ebenfalls einen Rekord darstellt. Um die Verzégerung der
Leitung zu stabilisieren, wurde eine 0.7 - 5 GHz verzégerungsleitungsbasierter Delay-Locked-
Loop (DLL) entwickelt und gemessen. Eine Version dieses Datenwandlers wurde als Zeit-
Digital-Umsetzer (TDC) erfolgreich getestet, wobei eine Auflosung von 250 ps erzielt wurde.
Dieses Resultat verbessert ebenfalls den Stand der Technik. Eine weitere Version wurde als 1:4
Demultiplexer (Demux) entworfen und charakterisiert. Im Vergleich zu anderen spulenlosen
1:4 Demultiplexern weist diese realisierte Schaltung die beste Energieeffizienz von 2,6 pJ/Bit
auf. Zusammenfassend funktioniert die vorgestellte verzogerungsleitungsbasierte Architektur
nicht nur als Uberabtastungsdatenwandler, sondern realisiert zusitzlich auch mehrere weitere

Signalverarbeitungsfunktionen.

AufBerdem wurden ein Pulsweitenmodulator (PWM) und —demodulator (PWDM) entwor-
fen. Diese Schaltungen beruhen auf dem Prinzip der gesteuerten Kondensatorauf- und -
entladung. Der PWM basiert auf einer Steuerung der Kondensatorentladungsquote. Er be-
steht im Wesentlichen aus einem 2-Bit stromsteuernden Digital-Analog-Umsetzer (DAC) und
einem Spannungs-Zeit-Wandler (VTC). Der VTC hat zwei Arbeitsphasen. In der ersten Phase
wird der Kondensator bis zum Erreichen der Versorgungsspannung aufgeladen, wihrend der
Kondensator in der zweiten Phase anhand der vom DAC erzeugten Steuerspannung entladen
wird. Die Pulsweite wird durch die Kondensatorentladungsquote bestimmt. Labormessungen
zeigen, dass der entworfene PWM Datenraten von bis zu 10 Gb/s und eine Rekordenergieef-
fizienz von 0,9 pl/Bit aufweist. Der PWDM setzt sich aus einem Zeit-Spannungs-Wandler
(TVC) und einem 2-Bit Analog-Digital-Umsetzer (ADC) zusammen. Der TVC arbeitet in der
Auflade- und Entladephase. Wihrend der Aufladephase wird der Kondensator durch ein puls-
weitenmoduliertes Eingangssignal bis zu einer bestimmten Spannung aufgeladen. Je breiter

die Pulsweite des Eingangssignals ist, desto hoher ist die Spannung iiber dem Kondens-



ix

ator. Diese, einer Kondensatorspannung eindeutig zuordenbare Pulsweite, wird durch den
ADC zu einem digitalen Signal umgewandelt. Wihrend der Entladephase wird der Kondens-
ator vollstindig entladen. Der PWDM erzielt die bislang beste Energieeffizienz von 0,93
pJ/Bit.

SchlieBlich wurden ein 4:1 Multiplexer (Mux) und ein 1:4 Demultiplexer entworfen und
charakterisiert. Fiir den Entwurf des Latches, welcher ein wesentliches Bauteil in Multi-
plexer und Demultiplexer ist, wurde eine Stromskalierungsmethode hinsichtlich Leistung und
Geschwindigkeit optimiert. Fiir die kritischen Daten- und Taktsignalpfade wurden elektro-
magnetische (EM) Simulationen durchgefiihrt, um deren Hochfrequenzverhalten zu unter-
suchen. Zudem wurde ein neuartiger hoch skalierbarer 16:1 Multiplexer entworfen, welcher

auf dem Prinzip der Verzogerungsleitungen basiert.

Die im Rahmen dieser Arbeit entworfenen Zeitbereich-Umsetzerschaltungen, wie z.B.
der eingangsabtastende, verzogerungsleitungsbasierte Datenumsetzer und seine Varianten, die
PWM/PWDM und Multiplexer/Demultiplexerschaltungen weisen mehrere neuartige Schal-
tungstechniken auf, die den Stand der Technik betrdchtlich verbessern.
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CHAPTER 1

DATA CONVERSION IN TIME-DOMAIN

The ever-increasing energy requirements of any broadband and high-speed digital com-
munication architecture presents an area of concern for system architects, digital signal pro-
cessing (DSP) engineers and hardware designers. With the rapid rise of mobile based web-
browising and the use of cloud computing for storage and processing of data in globally
distributed data centers, the energy consumed by data networks and servers has increased tre-
mendously. The worldwide annual growth rate of information and communication technology,
for example, is around 7% [1] and, specifically, for internet traffic is around 22% [2]. Such
an alarming growth rate is driving the data rates up to 100 Gb/s while putting stringent power
and performance constraints on the entire communications infrastructure. In the domain of
hardware design, several spectral-efficient wideband chip-to-chip and board-to-board wireline
[3], [4] and wireless [5], [6] serial communications links are investigated to address this chal-
lenge of energy-performance tradeoff for server computing application and processor inter-
core communication. However, for such advanced architectures, ultra-wideband operation and
the corresponding ultra-high speed sampling poses challenging requirements on the circuit-
level design of data converters used in such links. This requirement has motivated research on
many remarkable high-speed multi-bit data converter architectures [7], however, the excessive
power and area consumption of these converters and their degraded signal-to-noise ratio (SNR)
at higher speeds renders them unsuitable to be used in multichannel beamforming application
setups such as chip-to-multichip communications on two adjacent boards. This restriction has
driven the need to investigate alternate data converter architectures.



2 1.1. Communications System Overview

1.1 Communications System Overview

Fig. 1.1 shows a generic overview of a wireless and wireline communication link. Data
converters in both the links sit in between the digital processing backend and the RF front
end. Wireless links typically employ multibit digital-to-analog converters (DACs) and analog-
to-digital converters (ADCs) inside the transmitter and receiver respectively. A wireline optical
or electrical link, on the other hand, time-interleaves or pulse-modulates the data on the
transmitting link and utilizes clock-data recovery (CDR) based demodulation to recover or
reconstruct the transmitted symbols in time.
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Figure 1.1: Conventional wireline and wireless transceiver architectures.

1.2 Data Conversion in Communications

Data converters are circuits which convert the information-bearing data contained in one
measurable physical quantity into another. Smart data converters convert analog data into
digital format or the digital data into analog format. For instance, a bipolar junction transistor
(BJT) temperature sensor core translates the temperature into the difference of base-emitter
voltages and can, by definition, be referred to as temperature-to-voltage converter. Using an
ADC to converter the sensed voltage difference into a digital format would result in a smart
temperature sensor. Typically, however, the term data converter refers to smart data converter,
which either generates or acquires the digital data for processing.

Within communications paradigm the data converters either convert digital data into amp-
litude or time domain, for instance, DACs or pulsewidth modulators respectively, or convert
the amplitude or time domain data into digital format, such as ADCs or CDR based PWM
demodulators respectively. Therefore, in communications system the analog information is
available either in amplitude-domain, like the different amplitude levels of a pulse [8], or time-

domain, such as the different widths of a binary pulse or its time-distributed zero-crossings
[91*.
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1.3 Data Conversion: From Amplitude to Time Domain

To achieve enhanced data rates and higher channel spectral efficiency, wireless serial links
typically employ multi-amplitude modulation schemes, and hence, require multi-bit/amplitude-
domain data converters i.e. ADCs and DACs. Fig. 1.2 shows, as an example, the assignment
of analog values to the input digital codes inside the DAC and the resulting baseband signal at
its output. The baseband signal is modulated to a carrier frequency inside the RF front end and
transmitted over a wireless link. The receiver front end demodulates the carrier signal, and if
sufficiently linear, regenerates the exact replica of the baseband signal at the input of the ADC.

Digital to Analog Conversion

.

>

..001011001...

———— Digital Data
Processing

AMPLITUDE

>

..001011001...

———— Digital Data
Processing

AMPLITUDE

Figure 1.2: A traditional wireless link employing an ADC and a DAC in receiver and transmitter side
respectively. DAC translates digital input into different amplitude levels while the ADC translates back the
amplitude levels to digital format (code conversion may be necessary to extract the exact transmitted bits).

The ADC performs the exact opposite operation as the DAC. It samples the received
baseband signal at Nyquist or higher rate, and assigns each sample a unique digital signature
or code. Each binary code has a length of N bits, resulting in 2V available codes to be assigned
to the analog signal. This ADC output is the digital binary coded representation of the analog
signal. The left most bit of the digital code is referred to as the most significant bit (MSB),
while the rightmost bit is called the least significant bit (LSB), which is typically called the
resolution of the ADC. The step size on the vertical axis of the ADC characteristics plot, A,
is equal to the analog value of the LSB and the entire axis or the conversion range is referred
to as the full scale (FS) range or the analog dynamic range (DR) of the converter. The FS
range is defined as the range of analog input values which can be reliably digitized inside the
ADC without causing any saturation issues and depends not only on the power supply voltage
but also on the data converter circuit topology. Typically, data converters are designed for

maximum achievable FS range, which is usually the available supply voltage. The converter’s
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resolution as a function of it’s FS range can be written as

FS DR
=% =% (1.1)

1.3.1 Technology Scaling and Amplitude-Domain Data Converters

CMOS technology scaling is always aimed at maximising the performance of the digital
systems, rendering the design of the analog circuits challenging, owing to the reduced avail-
able voltage headroom. This is because the threshold voltage of the devices scales down
rather slowly in comparison to the aggressive voltage scaling, which essentially reduces the
difference between available supply voltage and minimum voltage required to keep the stacked
transistors in saturation with each scaled node. While minimum feature size of CMOS tran-
sistors enables miniaturization of microprocessors and the digital processing chips, and offers
high performance, this technology scaling presents serious constraints in the design of mixed-
signal circuits such as data converters due to reduced voltage headroom. In the receiver side,
for instance, the ultra-high speed sampling of multi-amplitude modulated input, poses chal-
lenging requirements on the circuit-level design of the multi-bit ADCs [7]. This is because the
decreasing minimum feature size of modern CMOS processes forces such traditional multi-
bit voltage-mode ADCs - and of course DACs - to operate from lower supply voltages to
meet device-breakdown requirements. While this is beneficial for the power dissipation, it
affects the amplitude-domain quantization, effectively increasing the thermal noise floor and
reducing the dynamic range or the SNR, which eventually worsens the overall noise figure of
the transceiver architecture [10]. This can be intuitevely understood by examining (1.1). An
N-bit ADC designed in 0.5-uym CMOS node can have a FS range up to 3 V compared to the
one designed in, say, 45-nm node, in which case the maximum achievable FS range would be
around 0.9 V. Therefore, for the same resolution ADCs, technology scaling from 0.5-m node
down to 45-nm node nearly reduces the FS range and the corresponding analog resoluton,
A, by a factor of three. This reduced A renders the ADC to become more suseptable to the
quantization noise due to, for instance, the aperture jitter of the sampling clock. Resultantly,
the accuracy of the amplitude-domain data converters, which depends on minimum detectable
voltage or A, scales poorly with technology. In addtion, the data converters circuit compon-
ents designed at lower power supply in submicron technologies are more prone to process
voltage temperature (PVT) variations and can contribute significant thermal noise to the the
signal. This resultantly increases the noise floor of the ADC, which effectively reduces the
SNR or the effective number of bits (ENOB) of the ADC designed in scaled CMOS nodes. The
reduced SNR of the ADC worsens the overall noise figure of the receiver. Besides the degraded
SNR of the data converters in scaled CMOS nodes, excessively high power consumption of

such ADCs, such as [7], [11], precludes their use in multichannel beamforming serial link
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environments, which are increasingly being investigated to satisfy the growing performance
requirements inside the backplane server computing setups and processor inter-core serial
links.

1.3.2 Amplitude-Domain Data Converters: Tradeoff between Dynamic
Range and Bandwidth

An interesting insight into the functionality of a generic data conversion architecture is
the interpretation of the tradeoff between its dynamic-range (DR), defined by the quantized
amplitude levels on the vertical scale, and its bandwidth, defined by the discrete sampling time
instants on the horizontal scale, as shown in Fig. 1.3. In the context of this DR-bandwidth
or amplitude-time tradeoff, data converters can be classified into three key categories. The
following qualitative analysis is presented for the amplitude-domain receiver data converters
or multi-bit ADCs but could very well be interpreted for transmitter data converters or multi-
bit DACs.

The first category consists of conventional clock-synchronized ADCs in which the analog
input is represented by evenly distributed amplitude-time ordered pairs, as can be seen in
Fig. 1.3(a). Such ADCs can be sub-categorized in two groups: a) voltage-mode ADCs and b)
voltage-time hybrid ADCs. In case of voltage-mode ADCs, the time-varying analog input is
first sampled and the resulting voltage is then quantized; while in the second class the sampled
voltage variable is converted into a time variable, which is then digitized in time-mode cir-
cuits. Concerning voltage-mode ADCs, different architectures are preferred for different spe-
cifications e.g. noise shaping ADCs are used in high-resolution low-frequency applications
[12]. For medium-resolution and medium sampling speed, SAR ADCs are preferred [13],
[14]. High-speed low-resolution applications typically employ flash ADCs [15], [16]. High-
speed and medium-to-high resolution applications usually require pipelining [17]. Finally, for
ultra-high-speed and medium-resolution applications, SAR or flash ADCs can be interleaved
[18], [7]. For voltage-time hybrid ADCs, the sampled voltage is first converted into a time
variable, e.g. the width of a pulse, and later the time variable is digitized in what is known
as Time to Digital Converter (TDC). A dedicated Voltage to Time Converter (VTC) circuit is

used to convert the voltage-variable into a time-variable [19], [20].

For balanced distribution of amplitude-time pairs, this category of ADCs employ sample-
and-hold (S/H) circuits at their front-ends. For ultra-high frequency operation, this makes
the performance of these ADCs susceptible to the artifacts introduced by the sampling pro-
cess, such as aliasing, noise folding, and aperture jitter in the sampling clock. While time-
interleaved ADCs enable sampling rates up to tens of GS/s, their performance is limited by

several factors including clock jitter and skew, geometric mismatch among channels, gain
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and offset mismatch among sub-ADCs, and capacitive loading to the sampling stage by the
interleaving array [21]. Such designs, therefore, resort to design-intensive error correction
(calibration, redundancy and randomization techniques) and linearity improvement (gain and
offset correction) circuit techniques, which cause power, area and design overhead [21]. In
addition, as discussed before, this category of ADCs suffers from reduced SNR in scaled
CMOS nodes.

The second category includes architectures in which the DR of the ADC is traded off, to
some extent, in favor of its BW as shown in Fig. 1.3(b). For example, to achieve a certain
resolution, Nyquist sampling requires lowest ADC bandwith but more quantization levels
(Fig 1.3(a)). Oversampling and utilizing a lower number of quantization levels, as shown in
Fig 1.3(b), can achieve the same resolution [22]. Reported ADCs, which exchange amplitude
for time to some extent, do not have evenly distributed amplitude-time ordered pairs and are
typically referred to as asynchronous/clock-free ADCs, level-crossing ADCs or event-driven
ADCs [23]. Such ADCs only record samples when the input signal crosses a quantization
level. Since, such data-converters rely on event-driven sampling dictated by the message
signal itself, and use level-crossing comparators to detect the crossing event instead of em-
ploying an external sampling clock, their use is limited to low power, high-resolution, and
low-frequency design regime, which renders them unsuitable for ultra-wideband operation. In
addition, technology-scaling-caused SNR reduction still remains a problem.

Following the ADC categories discussed above and their key limitations, it can be com-
fortably argued that the continuous scaling of the CMOS process has resulted in increased
time-resolution and reduced voltage or amplitude-resolution. To address the scaling-induced
performance degradation of the data converters, it is convenient, on the transmitting side, to
translate the data into time difference between the occurrences of digital events/data instead
of nodal voltages or branch currents of electric circuits. Consequently, on the receiving side,
amplitude scale can be completely turned over to time scale, and hence, quantization can
be performed in time domain instead of amplitude domain. This scheme presents a viable
option to circumvent some of the above problems concerning the first two categories of the
ADCs. Therefore, a third category of data converters is defined which presents the limit case
of amplitude-to-time conversion as can be seen in Fig. 1.3(c). Data conversion circuits under
this category deal only with binary antipodal signals and perform quantization in time domain
as the converter DR is reduced to just one predefined quantization level. It is argued that
exchanging the quantization scale from amplitude to time-domain can help in scaling-caused
dynamic range reduction issue in the data converters of the first two categories.



8 1.4. Thesis Motivation and Organization

1.3.3 Existing Time-Domain Data Converters and their Limitations

Serial links which operate under the limit case of amplitude-to-time conversion deal only
with binary symbols and perform quantization in time domain as the amplitude dynamic range
of the input is reduced to just one predefined quantization level (third category data converters
depicted in Fig. 1.3(c). The transmitting side of such a link either serializes the input parallel
streams e.g. multiplexing non-return-to-zero/return-to-zero (NRZ/RZ) input symbols [3] or
modulates the width of a pulse [4]. The receiving side of the link is designed to distinguish the
relative position of the transmitted symbols in time. Examples of such receivers, typically em-
ployed in a wireline link, include a CDR circuit and a demultiplexer-based receiver, and PWM
demodulators. CDR and PWM demodulators deal with symbols, which carry information in
their binary amplitude levels e.g. RZ/NRZ signaling symbols, and pulse-widths e.g. PWM
symbols. Such time-mode receivers first recover the clock embedded in the input symbols and
then use this recovered clock to sample the received symbols, under the assumption that each
symbol spans equal amount of time. However, channel losses, limited link bandwidth, and
analog circuit impairments result in inter-symbol-interference (ISI) or jitter, corrupting the
transmitted value of symbols time-length or the distance between transitions. In addition, such
time-mode receivers are typically based on phased-locked-loop (PLL) design whose high-
speed performance is limited by design challenges including input sensitivity, jitter tolerance,
signal distribution, analog circuit non-idealities, power dissipation etc [24]. These limitations
not only restrict the input data-rate range but also make the signal reconstruction a challen-
ging task at speeds in the order of tens of Gb/s. For reliable clock and data recovery, such
receivers, therefore, resort to analog-intensive equalization schemes [25] and require pre-
emphasis/equalization on the transmitting side as well. A promising technique of precisely
recovering the time-mode binary symbols, while minimizing the equalization overhead, is to
oversample the received input symbol sequence [26]. However, implementing oversampling
in the existing time-domain data converters comes at the cost of design overhead and incurs a
heavy power penalty [26].

1.4 Thesis Motivation and Organization

To this point it has been established that performing quantization in time-domain instead
of amplitude-domain can circumvent the problem of reduced dynamic range in multi-bit
data converters designed in submicron CMOS. This amplitude-to-time conversion, however,
requires the information or data to be translated in a time variable instead of a voltage vari-
able. The data converters which deal with such time-domain data were also discussed and

the limitations in their architecture were presented. These limitations prevent such convert-
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ers, on the receiving end, to recover the time-domain data with high precision without the
use of power-area hungry analog-intensive equalization circuitry. In addition, implement-
ing power-speed tunability in existing time-domain converters comes at the cost of addi-
tional design and power-area overhead, precluding their use in hotly-researched and promising

future-generation energy adaptive serial links architecture, such as [27].

The work presented in this thesis has primarily been motivated by the above-mentioned
limitations, inspiring us to investigate new power-area efficient and power-speed adaptable
time-domain data converter architectures suitable for transmitting and receiving the time-
domain data with sufficiently high precision. The following chapters in this thesis consist
of circuit techniques and architectural novelties aimed at addressing the limitations of the

existing time-domain data converters.

Chapter 2 discusses a novel delay-line based high oversampling time-domain data con-
verter. The chapter starts with an overview of the significance of oversampling on time-
mode data, details the architecture and circuit level design of the data converter, presents
its characterization results and finally compares it with the existing time-domain converter
circuits. Chapter 3 discusses in detail the some of the key applications of the data converter
discussed in chapter 2. It also provides details on the wireless serial link demonstrator setup in
which the data converter was used as an oversampling quantizer on the receiver side. Chapter 4
discusses improvements made on the basic delay-line based receiver data converter. These
include automatic delay control of the delay-line using a delay-locked-loop (DLL), imple-
menting inductive peaking inside the delay-elements of the delay line and making them power-
speed adaptable. Chapter 5 discusses pulsewidth modulation/demodulation based data con-
verters. The chapter details a novel capacitor charging/discharging based PWM modulator

Transmitter, Tx

L —| © Delay-line based...
B:Ij::: 4| :| © Pulewidth Mod. based... [ F:::‘T:ﬁ ;
= @ Multiplexer based...

Time-Domain Data Converters

o
c
c

Receiver, Rx =
o

Digital |2 | @O Delay-line based...
Bacgkend o | O Pulewidth Demod. based... || Analog
| @ Demultiplexer based... Front End

Time-Domain Data Converters

Figure 1.4: Data converters on the transmitter and receiver side designed as a part of this thesis work. The

numbered circle besides each data converter indicates the chapter in which it is discussed.
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and demodulator which has been characterized to achieve best energy figure in comparison
to the existing PWM architectures. Chatper 6 explores broadband tree architecture and shift
register architecture based multiplexer and demultiplexer based data converter designs. It also
presents a delay-line based transmitter data converter which works on the principle exactly
opposite to that of the delay-line based receive data converter discussed in chapter 2. This
converter architecture can achieve data rates upto 25 Gb/s, with a power efficiency of only
160 fJ/bit. Finally, the conclusion and future outlook of time-domain data converters is brought

up in Chapter 7.

Fig. 1.4 shows different types of the time-domain data converters designed in this work for
transmit and receive channel. Delay-line based data converters are presented in chapters 2-
4 and 6, while the PWM modulators/demodulators and multiplexers/demultiplexers are dis-

cussed in chapter 5 and 6 respectively.

1.5 Few Words on the GLOBALFOUNDRIES 45-nm SOI
CMOS Process Node

The circuits and systems presented in this work were designed and characterized in GLOB-
ALFOUNDRIES (GF) 45-nm silicon-on-insulator (SOI) technology and its upgraded RF fla-
vor 45RFSOL. The technology has been extensively used in the design and characterization of
several broadband RF and mixed signal circuits including low-noise amplifiers (LNAs), high-
speed multiplexers, wireline transceivers, and power amplifiers to name a few [28], [29]. The
process offers partially depleted floating body NMOS and PMOS devices while the channel
length is fixed at 40-nm. Two gate oxide thicknesses are available: a thin oxide gate with a
nominal supply voltage of 0.9 V and a thick oxide gate with a nominal supply voltage of 1.5 V.

Besides the commonly included pcells, the provided process development kit (PDK) in-
cludes high quality metal-insulator-metal (MIM) capacitors, high-Q inductors and RF mod-
elled transmission lines. Up to four back-end-of-line (BEOL) metal stacks are available with
minimum seven metal layers for one stack (7LM-3Mx-1Cx-1Ux-10x-LD) and upto eleven
metals for another (11LM-3Mx-2Cx-3Bx-2Ux-LB). The process also offers different gate
poly pitches allowing the relaxed poly pitch transistors to benefit from reduced parasitics
due to larger separation between source/drain contacts and the gate poly. According to the
measurement data provided by the original developers of the process, for 30 ;zm wide NMOS
and PMOS - 30 fingers with each 1 pm wide for both transistors - peak f; of 485 GHz
and 345 GHz can be achieved respectively in this process. This demonstrates the intrinsic

broadband nature of the active devices available in this process.

This 45-nm CMOS process, originally developed by IBM, includes several IBM-designed
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digital-oriented pcells and also GF-introduced analog/RF-oriented pcells. This makes this
process an ideal candidate for the design and development of System-on-Chip (SoC) archi-
tectures.

1.6 Chapter Summary

This chapter started with the discussion of the ever increasing internet and mobile traffic
and the power and performance constraints these data requirements are placing on the existing
hardware infrastructure. In order to address this exponential growth in demand of data traffic in
both short-haul and long-distance wireless and wireline links, the importance of broadband cir-
cuit design was discussed. Next, the amplitude-domain and time-domain data converters were
presented and it was argued that due to technology scaling the dynamic range of amplitude-
domain data converters is decreasing while the noise floor is consistently increasing. After
examining the dynamic range and bandwidth trade-offs between of the amplitude-domain con-
verters, it was proposed that performing quantization in time-domain can potentially solve the
technology-scaling-caused SNR reduction in amplitude-domain data converters. Next, some
existing time-domain data converters and their limitations were discussed and a motivation
to work on energy-efficient high-precision time-domain circuits was presented. Finally, some
qualities of 45-nm SOI CMOS node were discussed, which is primarily used to fabricate the
circuits designed and characterized in this dissertation.

In the following chapters several new time-domain transmit- and receive-side designed and
characterized data converter circuits are presented and their improved specifications over the
state-of-the-art are discussed.



