Beiträge aus der Informationstechnik

René Kirrbach

Untersuchungen zu linearen optisch-drahtlosen Frontends und applikationsspezifischen Freiformlinsen für die optisch-drahtlose Kommunikation

Dresden 2021

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2021

Die vorliegende Arbeit stimmt mit dem Original der Dissertation "Untersuchungen zu linearen optisch-drahtlosen Frontends und applikationsspezifischen Freiformlinsen für die optisch-drahtlose Kommunikation" von René Kirrbach überein.

© Jörg Vogt Verlag 2021 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-051-3

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Technische Universität Dresden

Untersuchungen zu linearen optisch-drahtlosen Frontends und applikationsspezifischen Freiformlinsen für die optisch-drahtlose Kommunikation

Dipl.-Ing.

René Kirrbach

der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zum Erlangen des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. Dirk Plettemeier Tag der Einreichung: 23.02.2021 Gutachter: Prof. Dr.-Ing. habil. Wolf-Joachim Fischer Tag der Verteidigung: 14.09.2021 Gutachter: Prof. Dr.-Ing. habil. Rainer Engelbrecht

Kurzfassung

Diese Arbeit widmet sich der detaillierten Untersuchung von analogen optischdrahtlosen Frontends (AFE) und applikationsspezifischen Freiformlinsen für die optischdrahtlose Kommunikation (OWC). Neben theoretischen Überlegungen werden Entwurfsbeispiele beschrieben, auf Leiterplattenebene mit Hilfe kommerzieller Komponenten realisiert und messtechnisch untersucht.

Ein Entwurfsbeispiel dieser Arbeit umfasst einen linearen Treiber, welcher mittels Transistorpräzisionsstromquelle mehrere Leuchtdioden ansteuert. Am Receiver wird ein nicht ausbalancierter, differentieller Transimpedanzverstärker (TIA) und ein TIA mit Nachverstärker untersucht. Die Charakterisierung der Schaltungen erfolgt hinsichtlich ihrer Leistungsaufnahme, ihrer Übertragungsfunkion sowie ihrer Linearität. An den Receiverschaltungen werden zudem Rauschmessungen durchgeführt. Zur Untersuchung der Datenübertragungseigenschaften werden Signale übertragen, die nach dem orthogonalen Frequenzmultiplexverfahren (OFDM) moduliert sind. Die maximale OFDM-Datenrate beträgt dabei 1554 Mbit/s. Die Übertragung wird in Abhängigkeit vom Empfangspegel, der Signalaussteuerung, dem LED-Arbeitspunkt, der Bandbreite und der Temperatur untersucht. So kann quantitativ gezeigt werden, wie zukünftige Transceiver von einer adaptiven Arbeitspunkteinstellung, einer adaptiven Bandbreite oder einer adaptiven Transmitteraussteuerung profitieren können.

Die Entwurfsbeispiele werden mit Hilfe eines kommerziell erhältlichen digitalen Signalprozessors in ein konventionelles Ethernet-Netzwerk integriert. Messungen der Datenrate in Punkt-zu-Punkt-, Punkt-zu-Multipunkt- und Multipunkt-zu-Multipunkt-Konfigurationen zeigen ihr vielseitige Anwendbarkeit. Darüber hinaus wird ein netzwerkbasierter Ortungsalgorithmus verwendet, um mobilen Teilnehmern im Netzwerk ortsspezifische Inhalte zu übermitteln.

Das wesentliche Herausstellungsmerkmal dieser Arbeit ist die detaillierte Untersuchung von Freiformoptiken im Kontext der OWC. Es wird ein Framework zur Berechnung von Freiformlinsen vorgestellt, welches in Bezug auf Li-Fi bisher einzigartig ist. Das Potential für die OWC wird mit Hilfe zahlreicher exemplarischer Transmitter- und Receiverlinsen untersucht. Das Framework nutzt ray-mapping-Algorithmen zur Konstruktion von Transmitterlinsen. Für den Entwurf von Receiverlinsen werden auf dem Randstrahlenprinzip aufbauende Methoden verwendet. Mittels Entwurfsbeispiel wird gezeigt, dass sich die optische Effizienz und die Homogenität innerhalb des Sichtfeldes (FOV) durch den Einsatz von totalreflektierenden Linsen verbessern lassen. Ein weiteres Entwurfsbeispiel stellt eine Mehrwegelinse am Transmitter vor, die ein elliptisches Emissionsprofil in ein FOV mit rechteckigen Querschnitt überführt. Gleichzeitig erlaubt sie es, die zulässige Transmitterleistung unter dem Gesichtspunkt der Augensicherheit um 13 dB gegenüber einem Transmitter ohne Linse zu erhöhen. Dies entspricht einer Reichweitenverbesserung um den Faktor 4,5. Ein anderes Entwurfsbeispiel demonstriert, wie Transmitter- und Receiverlinse zu einer Hybridlinse kombiniert werden können, um einen kontaktlosen Drehübertrager zu realisieren. Simulativen Untersuchungen zeigen, dass eine Kombination von Freiform-Fresnellinsen mit dem betrachteten AFE, je nach Konfiguration, eine Datenübertragung über Reichweiten von mehreren zehn Metern bis knapp 100 m erlaubt.

Zusammenfassend demonstriert diese Arbeit, dass die vorgestellten Entwurfsbeispiele verschiedene Anwendungen sehr gut adressieren können und damit eine sinnvolle Alternative zu kommerziellen Funktechnologien darstellen. Die Freiformlinsen sind dabei der Schlüssel zu einer effizienten Lösung mit hoher Performanz.

Abstract

This thesis investigates the analog optical wireless frontend (AFE) and application-specific freeform lenses for optical wireless communications (OWC). Besides theoretical considerations, design examples are described, implemented at printed circuit board (PCB) level, and investigated metrologically.

The design examples include a linear driver that interfaces multiple light-emitting diodes using a transistor precision current source. The receiver design examples compromise an unbalanced differential transimpedance amplifier (TIA) and a single-ended TIA with post-amplifier. The circuits are characterized with respect to their power consumption, transfer function, and linearity. Additionally, the receiver circuit noise is investigated and measured.

Signals modulated by orthogonal frequency division multiplexing (OFDM) are transmitted to evaluate the data transmission characteristics of the AFE. This work reports OFDM data rates of up to 1554 Mbit/s. The transmission is studied as a function of received signal strength, transmitter signal level, emitter operating point, bandwidth, and temperature. Thereby, the work quantifies how future transceivers can benefit from features, such as adaptive operating point adjustment, adaptive bandwidth adjustment, and a special type of adaptive power loading.

The design examples are integrated into an Ethernet network using a commercial digital signal processor. Data rate measurements in point-to-point, point-tomultipoint, and multipoint-to-multipoint configurations underline the versatility of the transceiver. In addition, a network-based localization algorithm is applied to deliver location-specific content to mobile users within the network.

The key feature of this work is the detailed investigation of freeform optics in the context of OWC. The work presents a design framework for freeform lenses, which is so far unique in terms of Li-Fi. By investigating several design examples, this work explores the potential of freeform optics for OWC. The framework uses ray-mapping algorithms to design transmitter lenses. Methods based on the edge ray principle are used to calculate receiver lenses. Using total internal reflection lenses, the optical efficiency and homogeneity within the field of view can be improved. Another design example is a multi-path lens that transforms an elliptical emission profile into a FOV with a rectangular cross section. With respect to eye safety, the lens allows an increase of the optical transmitter power by 13 dB compared to a transmitter without a lens. This result corresponds to a range improvement by a factor of 4.5. Another design example demonstrates how transmitter and receiver lens are combined into a new single hybrid lens to realize contactless data transmission in rotary applications. Finally, a simulative feasibility study investigates the combination of freeform Fresnel lenses with the considered AFE. The lenses extend the communication range to several tens of meters depending on the AFE configuration.

In summary, this work demonstrates that discussed design examples can address various applications very well and thus represent a reasonable alternative to commercial radio frequency technologies. Freeform lenses are the key for an efficient solution with high performance.

Danksagung

Diese Arbeit verfasste ich zu meiner Zeit als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Photonische Mikrosysteme (IPMS). Ich möchte mich daher bei all jenen Bedanken, die die Rahmenbedingungen für dieser Arbeit gelegt haben.

Ein besonderer Dank gilt Prof. Dr.-Ing. habil. Wolf-Joachim Fischer, der diese Arbeit durch regelmäßige Treffen betreute, die notwendigen Rahmenbedingung schaffte und mich insbesondere bei der Organisation unterstützte. Ein weiterer Dank gilt Prof. Dr.-Ing. habil. Rainer Engelbrecht, der sich für diese umfangreiche Arbeit als Zweitgutachter bereitgestellt hat.

Darüber hinaus möchte ich mich bei meinen Kollegen am Fraunhofer IPMS bedanken. Zum einen bei Dr.-Ing. Alexander Noack, der mir stets mit Rat zur Seite stand und die Finanzierung von Veröffentlichungen und Entwürfen sicherstellte. Ein weiterer Dank gilt Dr.-Ing. Michael Faulwaßer, der sich als ausgezeichneter Co-Autor in diversen Veröffentlichungen bewiesen hat. Bei M. Sc. Tobias Schneider möchte ich mich für die innovationsreichen Diskussionen im Themenfeld der Optik bedanken. Darüber hinaus geht mein Dank an Dipl.-Ing. Benjamin Jakob für die zahlreichen Diskussionen über die optisch-drahtlose Kommunikation.

Schlussendlich gilt ein großer Dank meiner Marie, welche mich während der gesamten Zeit unterstütze.

Inhaltsverzeichnis

AI	Abbildungsverzeichnis					
Та	Tabellenverzeichnis >					
AI	okürz	ungsv	erzeichnis	XIX		
Sy	/mbo	lverze	ichnis	XXIII		
1	Ein 1.1 1.2 1.3	eitung Motiv Ziel d Aufba	ation	1 . 1 . 2 . 4		
2	Sta 2.1 2.2 2.3 2.4	nd der Kateg Anwer Stand Forsch 2.4.1 2.4.2	Technik orisierung	5 . 5 . 6 . 7 . 8 . 8 . 9		
3	Phy	sikalis	che und technische Grundlagen	11		
	3.1	Optise 3.1.1 3.1.2 3.1.3 3.1.4	ch-drahtlose Kommunikation	. 11 . 11 . 13 . 14 . 21		
	3.2	Modu 3.2.1 3.2.2	lationsverfahren	. 25 . 26 . 27		
	3.3	Rause 3.3.1 3.3.2 3.3.3 3.3.4	henAllgemeines Rauschkenngrößen Fehlerraten Rauschquellen	. 29 . 29 . 30 . 31 . 31		
	3.4	Nichtl 3.4.1 3.4.2 3.4.3	inearität	. 35 . 36 . 36 . 37		

	3.5	Optise	che Systeme		37
		3.5.1	Physikalische Grundlagen		38
		3.5.2	Lichtgeschwindigkeit und Brechungsindex		39
		3.5.3	Fresnelreflexionen		39
		3.5.4	Geometrische Oberflächen und Freiformoptiken		40
		3.5.5	Transmitteroptik		41
		3.5.6	Receiveroptik		42
		3.5.7	Fertigung von Freiformoptiken		44
4	Δna	annlo	ontisch-drahtloses Frontend		47
-	<u> </u>	OFD	M_Signal		47
	4.1	Vorüh	perlegungen zur Leistungsübertragungsbilanz	•	48
	1.2	421	Beichweite-Sichtfeld-Kompromiss	•	48
		422	CNB über Beichweite	·	49
		423	Bandbreite-Beichweite-Kompromiss	·	51
		424	Schlussfolgerung und Einschränkung der Zielparameter	·	52
	43	Trans	mitter	•	53
	110	4.3.1	Anforderungen	ċ	53
		4.3.2	Wahl des Emitters	Ċ	54
		4.3.3	Entwurf des Treibers		55
		4.3.4	Ergebnisse	ċ	71
		4.3.5	Diskussion		76
	4.4	Receiv	ver		80
		4.4.1	Anforderungen		80
		4.4.2	Wahl der Photodiode		80
		4.4.3	Entwurf des Empfängerschaltkreises		82
		4.4.4	Ergebnisse		98
		4.4.5	Diskussion		105
	4.5	Messu	ngen an DCO-OFDM-Signalen		113
		4.5.1	DCO-OFDM-Eingangssignal		113
		4.5.2	Datenrate und CNR über der Empfangsleistung		114
		4.5.3	Datenrate über der Transmitteraussteuerung		117
		4.5.4	Datenrate über dem LED-Arbeitspunktstrom		119
		4.5.5	Datenrate über der Bandbreite		120
		4.5.6	Temperaturverhalten		121
	4.6	Disku	ssion		122
		4.6.1	Diskussion der OFDM-Datenübertragung		122
		4.6.2	Vergleich mit anderen Systemen aus der Literatur		129
5	Frei	formo	ntiken für die ontisch-drahtlose Kommunikation		131
Ŭ	5.1	Entwi	urfsmethoden		131
	0.1	511	Übersicht	•	131
		512	Bay Manning	•	132
		5.1.2	Randstrahlenprinzin und Optimierung	·	132
	52	Frame	work zum Design von Freiformontiken	•	136
	0.4	5.2.1	Initialisierung	•	137
		5.2.1	Ein- und Ausgangsvektoren	•	137
		5.2.2	Lin and Hasgangovered of the test of t	•	-01

		5.2.3	Geometrisches Strahlziehen
		5.2.4	Interpolation
		5.2.5	Export
		5.2.6	Simulation
		5.2.7	Optimierung
		5.2.8	Fertigung
		5.2.9	Verknüpfung mit Transceiverperformanz
	5.3	Entwu	rfsbeispiele Transmitterlinsen
		5.3.1	Totalreflektierende Transmitterlinse
		5.3.2	Transmitter-Freiform-Fresnellinse
		5.3.3	Mehrwegelinse für hohe Leistungen
	5.4	Entwu	rfsbeispiele Receiverlinsen
		5.4.1	Dielectric Totally Internally Reflecting Concentrator 154
		5.4.2	Rotationssymmetrische TIR-Receiverlinsen
		5.4.3	Receiver-TIR-R-Freiform-Fresnellinse
	5.5	Entwu	rfsbeispiel Hybridlinse
		5.5.1	Motivation
		5.5.2	Transmitterteil
		5.5.3	Receiverteil
		5.5.4	Ergebnisse
		5.5.5	Diskussion
6	۸nu	ondun	ashajshjala 160
U	61	Transc	reiver für die Kommunikation und Ortung in Innenräumen 169
	0.1	611	Motivation 169
		612	Systemkonzept 169
		6.1.3	Ergebnisse 171
		6.1.4	Diskussion
	6.2	OFDM	I-basierter Transceiver für hohe Reichweiten
		6.2.1	Anforderungen
		6.2.2	Systemkonzept
		6.2.3	Simulationen
		6.2.4	Diskussion
7	Zus	ammer	nfassung und Ausblick 183
I it	torati	Irvor70	sichnie 185
	cratt		
A	Mes	sgerät	e 205
в	Mes	saufba	uten 207
	B.1	Messu	ngen des Frequenzgangs
		B.1.1	Allgemeines Vorgehen
		B.1.2	Transmitter: LED-Strom
		B.1.3	Transmitter: Optisches Signal
		B.1.4	Receiver

	B.2	Messung der THD	209			
		B.2.1 Allgemeines Vorgehen	209			
		B.2.2 THD im LED-Strom	210			
		B.2.3 THD im optischen Transmittersignal	210			
		B.2.4 THD im Ausgangssignal	210			
	B.3	Rauschmessungen	210			
	B.4	Temperaturcharakterisierung	211			
С	Übe	rsicht: Kommerzielle OPVs	213			
D	Übe	rsicht: Kommerzielle Leistungstransistoren	215			
Е	Übe	rsicht: Kommerzielle NIR-LEDs	217			
F	Übe	rsicht: Kommerzielle Si-PIN-PDs	219			
G	Übe	rsicht über die Komponenten der betrachteten Schaltungen	221			
н	Verö	offentlichungsliste (Chronologisch, 23.02.2021)	223			
Lit	Literaturverzeichnis der Anhänge 225					

Abbildungsverzeichnis

1.1	Ausschnitt aus dem elektromagnetischen Spektrum. Die Definition der Spektralbereiche erfolgt nach <i>DIN 5031-7</i> [53]	1
1.2	Schwerpunkte der Arbeit	2
2.1	Taxonomie der OWC. Modifiziert nach Haas [82]	5
2.2	Ausgewählte Anwendungsfelder der OWC	7
0.1		10
ა.1 ვე	Comptisch-drantiose Datenubertragungsstrecke	12
0.2 3.3	Schematische Darstellung einer LED Modifiziert nach Säckinger [222]	14
3.4	LED-Kennlinien	16
3.5	LED-Modell. Aufbauend auf den LED-Ersatzschaltbildern nach	10
0.0	Lee [151], Li et al. [158] und Shatalov et al. [234] wurde das Model	
	analog zum PD-Ersatzschaltbild nach Piels et al. [204] aufgebaut.	16
3.6	Schematische Darstellung eines VCSEL und eines KE. Adaptiert nach	
	Jung [120] und Meschede [172]	18
3.7	Schematische Darstellung einer PIN-PD. Modifiziert nach	
	Säckinger [232]	21
3.8	PD-Modell. Modifiziert nach Piels et al. [204] und Säckinger [232]	22
3.9	Ubersicht über Modulationsarten. Modifiziert nach Islim et al. [112] .	26
3.10	NRZ-OOK-Signal im Zeit- und Frequenzbereich. Adaptiert nach	07
2 11	OEDM Signal im Zeit, und Frequenzbereich Adaptiert nach Arm	27
5.11	strong [10]	28
3 1 2	Bauschtypen Modifiziert nach Säckinger [232]	20
3.13	Überblick über Bauschquellen im OWC-Kanal	32
3.14	Interne Rauschquellen im Receiver nach Hobbs [95]	34
3.15	Übertragungscharakteristik eines nichtlinearen Systems. Modifiziert	
	nach Säckinger [232]	36
3.16	Harmonische und Intermodulationsprodukte über dem Spektrum.	
	Adaptiert nach Säckinger [232]	37
3.17	Reflexionsgrad über dem Einfallswinkel	40
3.18	Klassifizierung geometrischer Flächen. Modifiziert nach Domhardt [58]	40
3.19	Etendue in einem System der geometrischen Optik. Modifiziert nach	
	Winston et al. [278]	43
3.20	Brechungsindex n verschiedener Gläser über λ [74][186]	44
4.1	Optische Empfangsleistung Φ_{RX} in Abhängigkeit des Sichtfeldwinkels	49
4.2	CNR über der Entfernung	50
4.3	OFDM-Datenrate über der Distanz für verschiedene Bandbreiten	52

4.4	Einfacher, digitaler Treiber	j
4.5	Analoger Treiber	,
4.6	TPSQ mit optischer Rückkopplung 58	3
4.7	Grundlegende Transmitterschaltung)
4.8	Bandbreitenerweiterung mittels Equalizing im Frequenzbereich 64	Ŀ
4.9	Pre-Equalizing vor der TPSQ)
4.10	Pre-Equalizing innerhalb der TPSQ	j
4.11	Layoutabhängige, parasitäre Effekte im Transmitter	3
4.12	AC-Kleinsignalanalyse des Treibers)
4.13	$\ddot{\mathrm{U}}bertragungs funktion \ des \ Treibers \ \ldots \ \ldots \ \ldots \ \ldots \ . \ . \ . \ . \ . \ .$	2
4.14	Übertragungsfunktion des Transmitters $\dots \dots 73$	5
4.15	DC-Linearität des Transmitters	E
4.16	Entwicklung der <i>THD</i> im Transmitter	,
4.17	PD-Gehäusetypen	-
4.18	Differentielle TIA-Konfigurationen [31, 131][232] 84	ŀ
4.19	Post-Equalizing mittels aktivem HP)
4.20	Parasitäre Kapazitäten des Widerstands $R_{\rm f}$ 90)
4.21	NAD-TIA-Receiver	
4.22	Simulierter Betrag der Transimpedanz im NAD-TIA-Receiver 92	2
4.23	Rauschabschätzung zum Receiver in NAD-TIA-Konfiguration 93	5
4.24	Rauschen über der optischen Eingangsleistung und CNR in	
	Abhängigkeit der Photodiodenkapazität in der NAD-TIA-Konfiguration 94	E
4.25	TIA+PA-Receiver)
4.26	Simulierter Betrag der Transimpedanz im TIA+PA-Receiver 96	j
4.27	Rauschabschätzung zum Receiver in TIA+PA-Konfiguration 97	,
4.28	Rauschen über der optischen Eingangsleistung und CNR in	
	Abhängigkeit der Photodiodenkapazität in der TIA+PD Konfiguration 98	;
4.29	Frequenzgang des Receivers in NAD-TIA-Konfiguration 99)
4.30	Frequenzgang des Receivers in TIA+PA-Konfiguration)
4.31	Rauschspannungsdichte und NEP des Receivers in NAD-TIA-	
	Konfiguration	-
4.32	Rauschspannungsdichte und NEP des Receivers in TIA+PA-	
	Konfiguration	-
4.33	Entwicklung der THD über dem Eingangssignal im NAD-TIA-Receiver103	5
4.34	Entwicklung der THD über dem Eingangssignal im TIA+PA-Receiver 104	ł
4.35	Messaufbau zu den DCO-OFDM-Messungen	5
4.36	OFDM-Eingangssignale und Referenz-CNR	Į
4.37	Datenrate und BLER über der Empfangsleistung 115)
4.38	CNR über dem Spektrum für verschiedene Empfangsleistungen 116	j
4.39	Datenrate über dem Empfangslevel für verschiedene Eingangsspan-	
	nungen	;
4.40	PSD für verschiedene Eingangssignalstärken 119)
4.41	Datenrate über dem Empfangslevel für verschiedene LED-	
1.15	Arbeitspunkte)
4.42	Datenrate uber dem Arbeitspunktstrom der LED 120)

4.43	Datenrate über dem Empfangslevel für verschiedene OFDM- Bandbreiten	120
4.44	Datenrate über der Umgebungstemperatur	121
5.1	Oberflächenkonstruktion mittels Strahlziehen	133
5.2	Leitungstransferproblem $[140][272]$	135
5.3	Randstrahlenprinzip und optimierte Eingangsvektoren	136
5.4	Framework zum Entwurf von Freiformlinsen	137
5.5	TIR-Transmitterlinse und Parametrisierung des Quellen- und Ziel- raums [141]	142
5.6	Bestrahlungsstärke einer rotationssymmetrischen Transmitter-TIR- Linse [141]	143
5.7	Schematische Darstellung von Transmitter-Freiform-Fresnellinsen	145
5.8	Computergrafik der Transmitter-Freiform-Fresnellinse	146
5.9	Emissionsprofil der Transmitter-Freiform-Fresnellinse	147
5.10	Methoden zur Vergrößerung der scheinbaren Ausdehnung der Strah-	
	lenquelle [140]	148
5.11	Optische Simulation zur Mehrwegelinse [140]	150
5.12	Fotografien der Mehrwegelinse [140]	150
5.13	Gemessenes Abstrahlprofil der Mehrwegelinse [140]	151
5.14	Messung zur Augensicherheit der Mehrwegelinse [140]	152
5.15	DTIRC und Messaufbau	154
5.10	DTIRC und dessen optischer Konzentrationsfaktor	155
0.17 E 10	Querschnittdarstellung der ersten TIR-Receiverlinse	150
0.10	symmetrischen TIR Receiverlinse	157
5 10	Zweites Entwurfsheispiel einer rotationssymmetrischen TIR-	107
0.10	Beceiverlinse	159
5.20	Optischer Konzentrationsfaktor der zweiten rotationssymmetrischen	100
0.20	TIR-Receiverlinse	159
5.21	Renderdarstellung der TIR-R-Fresnellinse	161
5.22	Optischer Konzentrationsfaktor und Empfangslevel der Receiver-	
	TIR-R-Freiform-Fresnellinse	162
5.23	Darstellung des Hybridlinsensystems und des Vergleichssystems [138]	165
5.24	Abstrahlprofil des Hybridlinsensystems und des Vergleichssystems [138]166
5.25	Empfangsleistung und Übersprechen im Hybridlinsensystem und im	-
	Vergleichssystem [138]	167
6.1	Anwendungsszenario: Kommunikation und Ortung in Innenräumen	169
6.2	Fotografische Aufnahme von Front- und Backend [135]	171
6.3	Empfangslevel und Datenrate im FOV	172
6.4	Empfangslevel entlang Y- und Z-Achse	173
6.5	Datenrate entlang Y- und Z-Achse	173
6.6	P2P-, P2MP- und MP2MP-Messungen	175
6.7	Messung zur netzwerkbasierten Lokalisierungsmethode $\ . \ . \ . \ .$	176
6.8	I2I am Beispiel smarter Leuchtmasten	178
6.9	Simulation der Datenrate in der Y-Z-Ebene mit Freiform-Fresnellinser	n 180

B.1	Messaufbau: Referenzmessung zum Frequenzgang
B.2	Messaufbau: Frequenzgangmessung im LED-Strom
B.3	Messaufbau: Frequenzgang messung im optischen Transmittersignal . $.\ 209$
B.4	Messaufbau: Frequenzgangmessung am Receiver
B.5	Messaufbau: Referenzmessungen der THD
B.6	Messaufbau: THD-Messungen
B.7	Messaufbau: Rauschmessungen am Receiver
B.8	Messaufbau: Temperatur charakterisierung des AFE $\ .$

Tabellenverzeichnis

3.1	Modellgrößen zum LED-Modell 17
3.2	Typische Kennwerte von LEDs und LDs im Vergleich 20
3.3	Modellparameter zum PD-Modell
3.4	Typische Kennwerte von PIN-PDs und APDs
3.5	Eigenschaften von mineralischen Gläsern und Kunststoffglas 44
4.1	Kennwerte des verwendeten OFDM-Signals
4.2	Anforderungen an den Transmitter $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 53$
4.3	Auswahl ge eigneter, kommerziell erhältlicher NIR-LEDs 55 $$
4.4	Vergleich der Treiberkonzepte 59
4.5	Auswahl geeigneter Konverter-OPVs
4.6	Auswahl ge eigneter OPVs für die TPSQ $\ldots\ldots\ldots\ldots\ldots\ldots$ 62
4.7	Transistoren für den Treiberschaltkreis $\ldots\ldots\ldots\ldots\ldots\ldots$ 63
4.8	Transmitter im Vergleich mit Systemen aus der Literatur 79
4.9	Anforderungen an den Receiver
4.10	Übersicht kommerziell erhältlicher Si-PIN-Photodioden \ldots 82
4.11	Auswahl ge eigneter OPVs für den Receiver mit Einzeldraht-Ausgang . 86
4.12	Auswahl volldifferentieller OPVs für den Receiver
4.13	Empfängerschaltungen im Vergleich mit OWC-Systemen aus der Li-
	teratur
4.14	OFDM-Signalaussteuerung im Transmitter
4.15	OFDM-Transceiver im Vergleich mit Systemen aus der Literatur $\ .\ .\ .\ 130$
5.1	Kennwerte der rotationssymmetrischen Transmitter-TIR-Linse und
	entsprechenden Vergleichssystemen
5.2	Parameter zur Abschätzung des Gefahrenpotentials für das Auge nach
	DIN EN 60825-1:2015-07 [140]
5.3	Technologien zur Datenübertragung in rotierenden Szenarien 164
5.4	Minimale Empfangsleistung der Hybridlinse in einem rotierenden Sze-
	nario
A.1	Messgeräte
C_{1}	Übersicht über geeignete OPVs mit Einzeldraht-Ausgang 213
C_2	Übersicht über geeignete volldifferentielle OPVs 214
0.2	
D.1	Übersicht über kommerziell erhältlicher Transistoren $\ldots \ldots \ldots 215$
E.1	Übersicht über kommerziell erhältliche NIR-LEDs \hdots
F.1	Übersicht über kommerziell erhältlicher Si-PIN-Photodioden 219

G.1	Komponenten d	ler	Transmitterschaltung									221
G.2	Komponenten d	les	NAD-TIA-Receivers									221
G.3	Komponenten d	les	TIA+PA-Receivers .									222

Abkürzungsverzeichnis

5G	5. Generation des Mobilfunks (5G)
AC	Wechsel- bzw. Wechselanteil (engl. alternating current)
ACO-	Asymmetrisch übersteuertes OFDM (engl. asymmetrically clipped opti-
OFDM	cal OFDM)
ADC	Analog-Digital-Wandler (engl. analog-to-digital converter)
AD-TIA	Ausbalancierter, differentieller Transimpedanzverstärker
AFE	Analoges optisch-drahtloses Frontend
APD	Avalanche-Photodiode
ASIC	Anwendungsspezifische integrierte Schaltung (engl. application-specific.
11010	integrated circuit)
AGC	Automatische Verstärkungsregelung (engl. automatic gain control)
AR	Erweiterte Realität (engl. Augmented-Reality)
BLER	Blockfehlerrate (engl. block error ratio)
BER	Bitfehlerrate (engl. bit error ratio)
BERT	Bitfehlerratentest (engl. bit error ratio test)
BJT	Bipolartransistor (engl. bipolar junction transistor)
BPSK	binäre Phasenumtastung
CAP	engl. carrier-less amplitude and phase modulation
CM	Gleichspannungs-Pin (engl. common mode)
CNR	Träger-zu-Rausch-Verhältnis (engl. carrier-to-noise ratio)
CPC	engl. compound parabolic concentrator
COP	Cycloolefin-Polymer
CIM	Farbintensitätsmodulation (engl. color intensity modulation)
CSK	engl. color-shift-keying
DAC	Digital-Analog-Wandler (engl. digital-to-analog converter)
DC	Gleich-/ Gleichanteil (engl. direct current)
DD	Direkte Detektion
DCO-	Optisches orthogonales Frequenzmultiplexverfahren mit DC-Bias (engl.
OFDM	DC-biased optical OFDM)
DHCP	engl. dynamic host configuration protocol
DTIRC	engl. dielectric totally internally reflecting concentrator
DSP	Digitaler Signalprozessor
DUT	Prüfling (engl. device under test)
EMV	Elektromagnetische Verträglichkeit
EN	Aktivierungs-Pin (engl. enable)
FB	Rückkopplung (FB, engl. <i>feedback</i>)
FET	Feldeffekttransistor
\mathbf{FFT}	Schnelle Fourier-Transformation (engl. fast Fourier transform)
FK	Fluoreszenzkonzentratoren

FORJ	faserbasierter Drehübertrager (engl. fiber optic rotary joint)
FOV	Sichtfeld (engl. field of view)
FPGA	engl. field programmable gate array
FSO	Optischer Richtfunk (engl. free space optics)
FWHM	Halbwertsbreite (engl. full width at half maximum)
GBP	Verstärkungs-Bandbreite-Produkt (engl. gain bandwidth product)
HF	Hochfrequenz
HHI	Heinrich-Hertz-Institut
HP	Hochpass
HLLED	Hochleistungsleuchtdiode
I2I	Infrastruktur-zu-Infrastruktur-Kommunikation
IC	Integrierter Schaltkreis (engl. <i>integrated circuit</i>)
IFFT	Inverse schnelle Fourier-Transformation (engl. inverse fast Fourier
	transform)
IGES	engl. Initial Graphics Exchange Specification
IM	Intensitätsmodulation
IOSB	Institut für Optronik, Systemtechnik und Bildauswertung
IPMS	Institut für Photonische Mikrosysteme
IRC	Infrarotkommunikation (IRC, engl. <i>infrared communications</i>)
ISI	Symbolübersprechen, auch Intersymbolinterferenz
JFET	engl. Junction-FET
KE	Kantenemitter
LD	Laserdiode
LED	Leuchtdiode
Li-Fi	Light-Fidelity
LNA	rauscharmer Verstärker (engl. low noise amplifier)
LOS	Sichtverbindung (engl. line of sight)
LSR	Flüssigsilikon (engl. liquid silicone rubber)
MAC	engl. media access control
MP2MP	Multipunkt-zu-Multipunkt
NAD-TIA	nicht ausbalancierter, differentieller TIA
NAPD-TIA	nicht ausbalancierter, pseudo-differentieller TIA
NEP	äquivalente Rauschleistung (engl. noise-equivalent power)
NIR	Nahinfrarot
NRZ	engl. non-return-to-zero
NURBS	nicht-uniforme rationale B-Splines (engl. non-uniform rational B-
	Splines)
OFDM	Orthogonales Frequenzmultiplexverfahren (engl. orthogonal frequency
	division multiplexing)
OLED	organische Leuchtdiode
OCC	optische Kamerakommunikation (engl. optical camera communications)
OPV	Operationsverstärker
OOK	engl. on-off keying
OSI-Modell	engl. Open Systems Interconnection model
OWC	optisch-drahtlose Kommunikation (engl. optical wireless communicati-
	ons)

P2MP	Punkt-zu-Multipunkt
P2P	Punkt-zu-Punkt
PA	Nachverstärker (engl. post amplifier)
PAM	Pulsamplitudenmodulation
PAPR	Spitze-zu-Durchschnittsleistungs-Verhältnis (engl. peak-to-average
	power ratio)
\mathbf{PC}	Polycarbonat
PD	Photodiode
PCB	Leiterplatte (engl. <i>printed circuit board</i>)
PEI	Polvetherimide
PIN-PD	positiv-intrinsisch-negativ Photodiode (engl. <i>positive intrinsic negative</i>
1 11 1 12	nhatadiade)
PMMA	Polymethylmethacrylat
POE	Primäres optisches Element
PPM	Puls-Pausen-Modulation
PBBS	Pseudo-zufällige Bit-Sequenz (engl. <i>pseudo random hit sequence</i>)
PWM	Pulsweitenmodulation
PHY	Physikalische Schicht
OAM	Oughterurgenplitudenmodulation
OPSK	Quadraturaniphtudenniodulation
BCLED	Lought diada mit antischan Resonator (angl. recongent cavity LED)
RE	Hochfroquong (ongl. radio frequency)
BX	Bocoivor
G;DM	Silizium Dhotomultiplier (ongl. <i>silicon nhotomultiplier</i>)
SILM	sharflächarmantiertes Pauelement (and surface mounted device)
SMD	oper la cimultan couce multiple comface
SIMD	engl. simulateous multiple surface
SIMME	Eign Simple helwork management protocol
SING	Signal-Rausch-verhännis (engl. signal-to-noise futto)
SUE	Sekundares optisches Element
SPAD	engi. single-photon avalanche photoaioae
	Zeitmentielen (meh time division multiele erees)
	Zeitmutipiex (engl. <i>time-atvision mutiple access</i>)
	Final de Transimpedanze amplifier)
TIA+PA	Einzeldrant-11A mit Nachverstarker
TIR	Totalreflexion (engl. total internal reflection)
TIR-R	Totalreflexion und Brechung (engl. total internal reflection - refraction)
TO	engl. transistor outline
TPSQ	Transistor-Prazisionsstromquelle
TPSQ-OF	Transistor-Prazisionsstromquelle mit optischer Ruckkopplung
TX	Transmitter
UVC	ultraviolette Kommunikation (engl. <i>ultra violet communications</i>)
V2V	Vehikel-zu-Vehikel-Kommunikation
VCSEL	engl. vertical-cavity surface-emitting laser
VGA	Verstarker mit variabler Verstärkung (engl. variable gain amplifier)
VLC	Kommunikation mittels sichtbarem Licht (engl. visible light communi- cations)

Symbolverzeichnis

Allgemein

A	Fläche allgemein
a_i	i-ter Koeffizient eines Polynoms
C_4	Korrekturfaktor für die Augensicherheit
C_6	Korrekturfaktor für die Augensicherheit
d	Abstand allgemein
i	Laufvariable, natürliche Zahl
j	Laufvariable, natürliche Zahl
k	Laufvariable, natürliche Zahl
$l_{\rm P}$	Abstand zwischen PD und Konzentratorausgang
N	natürliche Zahl
$N_{\rm s}$	Zahl der Samples bzw. Messwerte
M	natürliche Zahl
x	Koordinate entlang der X-Dimension senkrecht zur optischen Achse
y	Koordinate entlang der Y-Dimension senkrecht zur optischen Achse
z	Entfernung, Distanz entlang der optischen Achsen
z_{ideal}	Entfernung mit der idealen Datenrate
$z_{\rm max}$	maximale Reichweite
z_{\min}	minimale Reichweite
$\rho_{\rm rel}$	relative Wahrscheinlichkeit

Elektrische Größen

Α	Verstärkung allgemein
$A_{\rm PA}$	Verstärkung des Nachversteuern
A_{TIA}	Verstärkung des OPVs des TIAs
A_{TOF}	Verstärkung des OPVs in der TPSQ-OF
A_{TPSQ}	Verstärkung des OPVs in der TPSQ
$\Delta B_{\rm An}$	Analysebandbreite im Oszilloskop
C	Kapazität allgemein
$C_{\rm BE}$	Basis-Emitter-Kapazität
$C_{\rm BC}$	Basis-Kollektor-Kapazität
C_{CE}	Kollektor-Emitter-Kapazität
$C_{\rm d}$	Sperrschichtkapazität einer Diode
$C_{\rm f}$	Rückkopplungskapazität (TIA)
$C_{\rm GD}$	Gate-Drain-Kapazität
$C_{\rm in}$	Eingangskapazität
C_{ISS}	Eingangskapazität am Transistor $(C_{\text{GD/BC}} + C_{\text{GS/BE}})$
$C_{\text{LED j}}$	Summe aus Sperrschicht- und Diffusionskapazität einer LED

$C_{\text{LED par}}$	parasitäre Kapazitäten am LED-Gehäuse bzw. den Anschlüssen
$C_{\rm OSS}$	Ausgangskapazität am Transistor $(C_{\text{GD/BC}} + C_{\text{DS/CE}})$
$C_{\rm par}$	parasitäre Kapazität allgemein
$\dot{C}_{\rm PD}$	Kapazität einer PD
$C_{\rm PDpar}$	parasitäre Kapazitäten am PD-Gehäuse bzw. den Anschlüssen
$C_{\rm RSS}$	Transferkapazität am Transistor $(C_{\text{GD/BC}})$
C_{τ}	Modellkapazität, die mit R_{τ} einen Tiefpass bildet
$D_{\rm LED}$	ideale Diode im LED-Ersatzschaltbild
E_{σ}	Bandlücke
en	auf den Eingang bezogene Spannungsrauschdichte
f	Frequenz allgemein
f_{-3dB}	-3dB-Frequenz
f _{BX}	Bandbreite des Receivers allgemein
Δf	betrachteter Frequenzbereich, Spektralabschnitt
ĠBP	Verstärker-Bandbreite-Produkt (engl. gain-bandwidth product)
$g_{ m m}$	Transkonduktanz allgemein
g _{m T}	Transkonduktanz der Transistorstufe (Transistor und Widerstand)
$g_{\mathrm{m} au}$	Modellgröße zur Anpassung der Einheit im PD-Ersatzschaltbild
HD_i	<i>i</i> -te harmonische Verzerrung
$H_{\rm LED}$	Übertragungsfunktion der LED
H _{RX}	Übertragungsfunktion des Receivers
HTPSO	Übertragungsfunktion der TPSQ
H _{TB}	Übertragungsfunktion des Treibers
H _{TX}	Übertragungsfunktion des Transmitters
$H_{\rm TXRX}$	Übertragungsfunktion des gesamten Kanals
H _{TX BX 0}	normierte Übertragungsfunktion des gesamten Kanals
H _v	Übertragung des Vorwärtsnetzwerks in einem Regelkreis
$I_{\rm B}$	Basisstrom eines Bipolartransistors
$I_{\rm C}$	Kollektorstrom eines Bipolartransistors
$I_{\rm D}$	Drainstrom eines Feldeffekttransistors
I_{LED}	LED-Strom allgemein
$I_{\rm LEDj}$	LED-Strom durch die ideale Diode im LED-Ersatzschaltbild
$I_{\rm LEDDC}$	LED-Arbeitspunktstrom
$I_{\text{LED DC}}^{\text{ideal}}$	LED-Arbeitspunktstrom, bei dem die $DR_{\rm max}$ maximal wird
$I_{\rm PD}$	Photostrom allgemein
$I_{\rm PDamb}$	Photostrom durch das Umgebungslicht
$I_{\rm PDd}$	Dunkelstrom einer PD
$I_{\rm PDDC}$	Gleichanteil des Photostroms
$I_{\rm PDDC}^{\rm krit}$	Gleichanteil des Photostroms, ab dem es zum Übersteuern kommt
$I_{\rm th}$	Schwellwertstrom (engl. threshold current) einer Laserdiode
$I_{\Phi TX}$	Modellgröße der optischen Leistung im LED-Ersatzschaltbild
$I_{\Phi RX}$	Modellgröße der optischen Leistung im PD-Ersatzschaltbild
IM_i	Intermodulationsprodukt <i>i</i> -ter Ordnung
$i_{\rm Em}$	Signalstrom durch einen Emitter
i_{LED}	Signal- bzw. AC-Anteil des LED-Stroms
i _n	Stromrauschdichte am TIA-Eingang

$u_{\rm nEm}$	Stromrauschdichte durch den Emitter
$i_{\rm nenc}$	Stromrauschdichte durch das e_n -C-Rauschen
i _{n in}	auf den Eingang bezogene Stromrauschdichte
$i_{ m nRf}$	thermische Stromrausch dichte des Widerstandes $R_{\rm f}$
$i_{\rm nsh}$	Stromrauschdichte des Schrotrauschens
$i_{ m ntot}$	Summe der Stromrauschdichten am TIA-Eingang
$i_{\rm PD}$	Signal- bzw. AC-Anteil des Photostroms
$i_{\rm PD}$	Signal- bzw. AC-Anteil des Photostroms in der Referenz-PD
$\mathbf{k}_{e\mathrm{L}}$	Wellenvektor eines Elektrons im Leitungsband
\mathbf{k}_{eV}	Wellenvektor eines Elektrons im Valenzband
\mathbf{k}_{ph}	Wellenvektor eines Photons
$L_{\rm LEDpar}$	parasitäre Induktivität der LED-Anschlüsse
$L_{\rm PDpar}$	parasitäre Induktivität der PD-Anschlüsse
$L_{\rm s}$	Serieninduktivität
$M_{\rm APD}$	Multiplikationsfaktor APD
$M_{\rm B}$	Modulationstiefe
$N_{\rm in}$	Rauschleistung am Eingang eines Systems
$N_{\rm a}$	zusätzliche Rauschleistung eines Systems
$N_{\rm s}$	Anzahl der gemessenen Samples
$P_{\rm RXtot}$	Leistungsaufnahme des Receivers
$P_{\rm sig}$	Signalleistung
P_{sig}^i	Signalleistung des iten Subträgers
$P_{\rm n}$	Rauschleistung
$P_{\rm n}^i$	Rauschleistung des iten Subträgers
$P_{\rm TXtot}$	Leistungsaufnahme des Transmitters
$P_{\rm tot}$	Leistungsaufnahme des Transceivers
$R_{\rm f}$	rückgekoppelter Widerstand
$R_{\rm L}$	Lastwiderstand
$R_{\rm LEDs}$	Serienwiderstand im LED-Ersatzschaltbild
$R_{\rm PD}$	Sensitivität einer PD
$R_{\rm PDp}$	Parallelwiderstand im PD-Ersatzschaltbild
$R_{\rm PDs}$	Serienwiderstand im PD-Ersatzschaltbild
$R_{\rm RPD}$	Modellgröße der PD-Sensitivität im LED-Ersatzschaltbild
$R_{\eta sl}$	Modellgröße der Steigungseffizienz im LED-Ersatzschaltbild
R_{τ}	Modellwiderstand, der mit C_{τ} einen Tiefpass bildet
$r_{\rm RSon}$	Leistungswiderstand
Т	Temperatur
t	Zeit allgemein
$t_{\rm ex}$	Anregungszeit von Ladungsträgern
$t_{\rm f}$	Abfallzeit (bspw. einer LED)
t_1	Lebensdauer einer Komponente
$t_{ m r}$	Anstiegszeit (bspw. einer LED)
$t_{\rm tr}$	Transitzeit von Ladungsträgern durch die PD-Diffusionszone
$U_{\rm BE}$	Basis-Emitter-Spannung
U_{bias}	Vorspannung im PD-Netzwerk
$U_{\rm CE}$	Kollektor-Emitter-Spannung

$U_{\rm cm}$	Gleichspannung (an einem OPV)
$U_{\rm DS}$	Drain-Source-Spannung
$U_{\rm GS}$	Gate-Source-Spannung
$U_{\rm LED}$	Vorwärtsspannung einer LED
Umax	maximale Spannung (Vorspannung)
U	Modellgröße zum Verknüpfen der Stufen im PD-Ersatzschaltbild
$U_{\rm PD}$	PD-Spannung
$U_{\rm th}$	Schwellenspannung (engl. threshold voltage)
U_{τ}	Modellgröße zum Verknüpfen der Stufen im LED und PD-
	Ersatzschaltbild
$u_{ m in}$	Eingangssignal am Transmitter
$u_{\rm messi}$	<i>i</i> -ter abgetasteter Spannungsmesswert
$u_{\rm nenc}$	Spannungsrauschdichte am Receiverausgang durch e_n -C-Rauschen
$u_{\rm nex}$	Spannungsrauschdichte am Receiverausgang durch externes Rauschen
$u_{\rm ni}$	Spannungsrauschdichte am Receiverausgang durch internes Rauschen
$u_{ m nnl}$	Spannungsrauschdichte am Receiverausgang durch nichtlineare Verzer-
	rungen
$u_{\rm nsh}$	Spannungsrauschdichte am Receiverausgang durch Schrotrauschen
$u_{\rm nout}$	Spannungsrauschdichte am Receiverausgang durch den Nachverstärker
$u_{\rm npa}$	Spannungsrauschdichte am Receiverausgang
$u_{\rm ntot}$	Summe der Spannungsrauschdichten am Receiverausgang
$u_{ m nTr}$	Spannungsrauschdichte durch den Treiber
$u_{\rm nTX}$	Spannungsrauschdichte durch den Transmitter
u_{o}	Spannungssignal am Ausgang allgemein
u_{out}	Spannungssignal am Receiverausgang
$u_{\rm out+}$	positives Spannungssignal am Receiverausgang
$u_{\rm out-}$	negatives Spannungssignal am Receiverausgang
$u_{\rm TIAin}$	Spannung am invertierenden Eingang des TIA
u_{TIAout}	Spannung am (positiven) Ausgang des TIA
$Z_{\rm f}$	Rückkopplungsimpedanz des TIAs
$Z_{\rm fof}$	Rückkopplungsimpedanz des TIAs in der TPSQ-OF
Z_{T}	Transimpedanz des Empfängers
в	Bückkopplungsfaktor (der TPSO)
<u>P</u> E-	relative Permittivität
<i>n</i> ,	Steigungseffizienz eines Emitters
751 DTTV	Effizienz des Transmitters
71X DTV -1	Effizienz des elektronischen Transmitters
/1 X el	Permeabilitätszahl
P ^o r (a)	Kreisfrequenz
(<i>w</i>)	Kreisfrequenz des Eingangspols am TIA
~~ p	in oper of a construction of a

Geometrische Größen

$A_{\rm in}$	Fläche der Eingangsapertur einer Optik
$A_{\rm out}$	Fläche der Ausgangsapertur einer Optik
$A_{\rm PD}$	aktive Fläche der PD
ATXFOV	Fläche, die vom Transmitter bestrahlt wird
C	Kurve im Raum
$d_{\rm PD}$	Kantenlänge der PD
$l_{\rm PD}$	Entfernung Konzentrator-PD
N	Vektorfeld der Oberflächennormalen
n	Normalenvektor (einer Oberfläche)
n_{ii}	<i>j</i> -ter Normalenvektor der <i>i</i> -ten Kurve
$n_{i}^{ m PD}$	<i>j</i> -ter Normalenvektor der <i>i</i> -ten Kurve der PD-Oberfläche
$n_{ m BX}$	optische Achse des Receivers in Vektorform
n _{TX}	optische Achse des Transmitters in Vektorform
O _i i	Richtungsvektor des <i>i</i> -ten austretenden Strahls der <i>i</i> -ten Kurve
P	Punkt allgemein
P_0	Quellpunkt
$P_{i,i}$	<i>i</i> -ter Punkt der <i>i</i> -ten Kurve
$P_{i,i}^{\mathrm{PD}}$	<i>i</i> -ter Punkt der <i>i</i> -ten Kurve der PD-Linse
P_{t}	Zielpunkt
Ra	Rotationsmatrix
Tin	Radius der Eingangsapertur
Tout	Radius der Ausgangsapertur
r_{t}	Radiusparameter im Zielraum
$r_{\rm BX}$	Ortsvektor der Receiverposition
r_{TX}	Ortsvektor der Transmitterposition
T _t	radiale Variable in der Zielebene
$t_{i,i}$	Tangentialvektor des i -ten Punkts auf der j -ten Kurve
$v_{i,j}$	Richtungsvektor des <i>i</i> -ten einfallenden Strahls der <i>i</i> -ten Kurve
$v_{i,i}^{\prime\prime}$	Richtungsvektor des <i>i</i> -ten Strahls der <i>i</i> -ten Kurve im zweiten Ab-
ι,j	schnitt
$v_{i,i}^{\prime\prime\prime}$	Richtungsvektor des <i>i</i> -ten Strahls der <i>i</i> -ten Kurve im dritten Ab-
ι,j	schnitt
α	Winkelausdehnung der scheinbaren Quelle (Augensicherheit)
θ	Polarwinkel allgemein
$\theta_{\rm FOV}$	Sichtfeldwinkel allgemein
θ_{i}	Einfallswinkel in den Receiver
$\theta_{\rm a}$	Akzeptanzwinkel (max. Einfallswinkel eines Konzentrators)
θ'_{a}	Anfangswinkel des optimierten Akzeptanzwinkelintervalls
$\theta_{a}^{\prime\prime}$	Endwinkel des optimierten Akzeptanzwinkelintervalls
$\theta_{\rm e}^{\rm a}$	Emissionswinkel am Transmitter
θ_{out}	Ausgangswinkel/ Kopplungswinkel (vom Konzentrator zur PD)
$\theta_{\rm s}$	Polarwinkel im Quellenraum
θ^i_{se}	Endwinkel eines Polarwinkelabschnitts im Quellenraum
$\Delta \theta_{\rm s}$	Polarwinkelabschnitt im Quellenraum
θ_{TX}	Sichtfeldwinkel Transmitter (Polarwinkel)

θ_{RX}	Sichtfeldwinkel Receiver (Polarwinkel)
θ	Azimutwinkel allgemein
$\vartheta_{\rm s}$	Azimut des Gitters im Quellenraum
ϑ_{t}	Azimut des Gitters im Zielraum
$\sigma_{\rm s}$	infinitesimales Flächenelement im Quellenbereich
$\sigma_{ m t}$	infinitesimales Flächenelement im Zielbereich
$\Psi_{\rm TX}$	räumliche Anordnung des Transmitters
$\Psi_{\rm RX}$	räumliche Anordnung des Receivers
$\Omega_{\rm s}$	Quellenraum
$\Omega_{\rm t}$	Zielraum

Mechanische Größen

ρ	Dichte
$r_{ m r}$	Rundungsradius der Abrundungen an den Linsen

Nachrichtentechnik

В	Bandbreite (des OFDM Signals)
BLER	Blockfehlerrate (engl. block error rate)
CNR	Träger-zu-Rausch-Verhältnis (engl. carrier-to-noise ratio)
CNR_0	Minimales, notwendiges CNR
DR	Datenrate
$DR_{\rm a}$	Datenrate in der Anwendungsmessung mittels <i>iperf 3.1.3</i>
DR_{\max}	maximale Datenrate in Abhängigkeit von Φ_{RX}
$f_{\rm c}$	Trägerfrequenz
$f^i_{\rm c}$	Trägerfrequenz des <i>i</i> -ten Trägers
$\Delta f_{\rm c}$	Trägerabstand
$M_{\rm b}$	Modulationstiefe
$N_{\rm c}$	Trägeranzahl eines Mehrträger-modulierten Signals
$P_{\rm n}$	Rauschleistung
$P_{\rm sig}$	Signalleistung
PSD	spektrale Leistungsdichte des Signals (engl. power spectral density)
SNR	Signal-zu-Rauschverhältnis allgemein
SR	Symbolrate
$T_{\rm s}$	Symboldauer
$\eta_{\rm spec}$	spektrale Effizienz
$\eta_{ m tot}$	Leistung pro Bit

Optische Größen

c _n	Lichtgeschwindigkeit in einem Material mit Brechungs index \boldsymbol{n}
D^*	spezifische Detektivität
E	Bestrahlungsstärke allgemein
E_{etendue}	Étendue
$E_{\rm TX}$	vom Transmitter erzeugte Bestrahlungsstärke

E_{\min}	minimale Bestrahlungsstärke in einer Ebene
$E_{\rm ph}$	Energie eines Photons
$f_{\rm ph}$	Frequenz eines Photons
g _o	optischer Konzentrationsfaktor der Receiveroptik
$g_{ m omax}$	maximaler optischer Konzentrationsfaktor der Receiveroptik
$H_{\rm o}$	Übertragungsfunktion des optischen Kanals
$H_{\rm o of}$	optische Dämpfung von der LED zur PD in der TPSQ-OF
$H_{\rm TPSQ,v}$	Übertragungsfunktion des Vorwärtsnetzwerks der TPSQ
Ie	Strahlungsintensität
L_{o}	optischer Verlust
NEP	äquivalente Rauschleistung, engl. noise equivalent power
n	Brechungsindex, auch Brechzahl
$R_{\rm FR}$	Reflexionsgrad in Folge von Reflexionsverlusten
R_{α}	Rotationsmatrix
$\eta_{\rm RXo}$	Effizienz der Receiveroptik
$\eta_{\rm TXo}$	Effizienz der Transmitteroptik
η_{TXoeff}	effektive Effizienz der Transmitteroptik
λ	Wellenlänge allgemein
$\lambda_{ m cl}$	Cut-On-Wellenlänge
$\lambda_{ m ch}$	Cut-Off-Wellenlänge
$\lambda_{ m p}$	Wellenlänge mit der Spitzenleistung
$\lambda_{\rm ph}$	Wellenlänge eines Photons
$\Delta \lambda$	spektrale Bandbreite (Halbwertsbreite)
$\rho_{\rm s}$	Leistungsdichte im Quellenraum
$ ho_{ m t}$	Leistungsdichte im Zielraum
Φ	optische Leistung oder auch optischer Fluss allgemein
Φ_{GZS}	Grenzwert der zulässigen Strahlungsleistung
Φ_{TX}	optische Sendeleistung am Transmitter allgemein
$\Phi_{\rm TXDC}$	Gleichanteil der optischen Sendeleistung des Transmitters
Φ_{TXAC}	Wechselanteil der optischen Sendeleistung des Transmitters
Φ_{TXAC}^{eff}	Effektivwert des Wechselanteils der optischen Leistung des Trans-
	mitters
Φ_{RX}	optische Leistung, die auf die PD einfällt
$\Phi_{\rm RXcross}$	optische Leistung des Übersprechens
$\Phi_{RX \operatorname{cross} 1}$	optische Leistung des Übersprechens im Transceiver
$\Phi_{RX \operatorname{cross} 2}$	optische Leistung des Übersprechens aus der Umgebung
$\Phi_{\rm RXDC}$	Gleichanteil der optische Leistung, die auf die PD einfällt
$\Phi^{\text{eff}}_{\text{RXAC}}$	Effektivwert des Wechselanteils der optische Leistung an der PD
Φ_{RXDC}^{ideal}	optische Leistung an der PD, bei der DR_{max} erreicht wird
$\Phi_{\rm RXmin}$	Empfindlichkeit des Transceivers (min. optische Leistung)
Φ_{RXDCmin}	Empfindlichkeit des Transceivers (min. optische DC-Leistung)
ϕ	Transferfunktion vom Quellenraum in den Zielraum

Physikalische Konstanten

- Lichtgeschwindigkeit im Vakuum $(2,998 \times 10^8 \,\mathrm{m/s})$ c_0
- Elementarladung $(1,902 \times 10^{-19} \text{ C})$ e
- Plancksches Wirkungsquantum $(6,626 \times 10^{-34} \,\mathrm{J\,s})$ h
- reduziertes Plancksches Wirkungsquantum ($\hbar = \frac{h}{2\pi}$) \hbar
- elektrische Feldkonstante (8,854 × 10⁻¹² A s/(V m)) magnetische Feldkonstante (1,256 × 10⁻⁶ N/A²) ε_0
- μ_0

1 Einleitung

1.1 Motivation

Die optisch-drahtlose Kommunikation (OWC, engl. optical wireless communications) erlebte unter dem Begriff Light-Fidelity (Li-Fi) eine Renaissance in der Forschung und beginnt in neuen Anwendungsfeldern Fuß zu fassen. Schon vor dem Aufkommen des Li-Fi-Begriffs war der Datentransfer mittels optisch-drahtloser Signale wohlbekannt. So erreichte die Infrarot-Fernbedienung eine große Verbreitung. Zeitweise wurden Infrarotschnittstellen in Mobiltelefonen und anderer Unterhaltungselektronik verwendet, um Datenübertragung über Kurzstrecken zu ermöglichen. Das heutige Interesse an der OWC lässt sich auf den Frequency Crunch, d. h. der Mangel an zur Verfügung stehenden Funkfrequenzen, zurückführen. Dieser Mangel resultiert aus dem exponentiellen Wachstum des mobilen Datenverkehrs [82, S.443][42, 279]. Die 5. Generation des Mobilfunks (5G) versucht bereits dieses Problem zu adressieren [279]. Durch die verbesserten Übertragungseigenschaften, wie Datenraten im Gbit/s-Bereich und Latenzen von wenigen Millisekunden [197], werden darüber hinaus neue Anwendungen wie autonomes Fahren ermöglicht [279]. Wenn die neuen Funktechnologien erfolgreich sind, werden zukünftig auch andere Anwendungen, die heute noch über Kabel angebunden sind, drahtlose Kommunikation einsetzen [279]. Dadurch beschleunigt sich das Wachstum des mobilen Datenaufkommens noch weiter [279].

Mit der OWC gibt es eine Alternativtechnologie, die andere Bereiche des elektromagnetischen Spektrums nutzt. Abb. 1.1 stellt einen Abschnitt des elektromagnetischen Spektrums nach *DIN 5031-7* [53] dar und markiert die ultraviolette Kommunikation (UVC, engl. ultraviolet communications), die Kommunikation mittels sichtbaren Lichts (VLC, engl. visible light communications) und die Infrarotkommunikation (IRC, engl. infrared communications). Die räumlich begrenzten Kanäle sind für verschiedene Anwendungen vorteilhaft. Im industriellen Umfeld garantieren sie Störsicherheit. In Innenräumen erlauben sie wiederum Lokalisierung sowie

f	$Hz \rightarrow 3$	3 • 1	0 ¹⁹ 3 ·	1016	7,9.	1014	4,3	·10 ¹⁴	3	·10 ¹¹	3.	108	103
	Gamma- strahlung		Röntgen- strahlung	Ul	traviolett	Sicht Lie	bares c <mark>ht</mark>	Infra strah	trot- lung	Mikro weller	- 1	Rundfunk	
7	$R/m \rightarrow$	10	-10 1)-8	3,8•	10-7	7,8•	10-7	10)-3]	1	105
					UVC	VI	LC	II	RC				

Abb. 1.1. Ausschnitt aus dem elektromagnetischen Spektrum mit den zugehörigen Kommunikationstechnologien. Die Definition der Spektralbereiche erfolgt nach DIN 5031-7 [53].

hohe Übertragungskapazitäten, da auf engem Raum viele Kanäle unabhängig voneinander koexistieren können. Mitunter ermöglicht die OWC eine Reduzierung der Systemkomplexität gegenüber 5G-Technologien [83, 84] und dementsprechend auch gegenüber zukünftigen Funktechnologien mit noch höherer Komplexität.

1.2 Ziel der Arbeit

Wie Abb. 1.2 illustriert, lässt sich ein optisch-drahtloser *Transceiver* in den *Trans*mitter (TX) und den Re*ceiver* (RX) untergliedern. Darüber hinaus ist eine Separation in Backend und Frontend möglich. Neben der digitalen Datenverarbeitung, die weitestgehend auf dem Backend stattfindet, ist das Frontend für die Performanz des Transceivers maßgebend.

Diese Arbeit widmet sich der detaillierten Untersuchung des analogen optischdrahtlosen Frontends (AFE) zur bidirektionalen Kommunikation mit Spitzendatenraten von mehr als 1 Gbit/s. Im *Open Systems Interconnection model* (OSI-Modell) ist die Arbeit in der Bitübertragungsschicht angesiedelt. Wie Abb. 1.2 illustriert, umfasst dies die elektronischen und die optischen Komponenten. Nach allgemeinen Betrachtungen zum elektrischen Entwurf sollen konkrete Entwurfsbeispiele auf Platinenebene unter Nutzung kommerziell erhältlicher Komponenten entwickelt und messtechnisch untersucht werden. Die Untersuchungen haben zum Ziel, Bandbreite, Linearität und Empfindlichkeit des AFE zu verbessern, um Datenrate und Reichweite des Transceivers zu maximieren.

Unter Nutzung eines kommerziell erhältlichen digitalen Signalprozessors (DSP) wird die Übertragung von Signalen untersucht, die nach dem orthogonalen Frequenzmultiplexverfahren (OFDM) moduliert sind. Die Übertragungseigenschaften werden in Abhängigkeit vom Empfangspegel, der Signalaussteuerung, dem Arbeitspunkt, der Bandbreite und der Temperatur untersucht, um wesentliche Zusammenhänge darzustellen. Die Funktionalität wird in einem Ethernetnetzwerk untersucht, wobei unter anderem eine Punkt-zu-Multipunkt (P2MP) Anordnung mit mehreren aktiven Verbindungen betrachtet wird.

Das wesentliches Herausstellungsmerkmal ist die detaillierte Untersuchung von Freiformoptiken im Kontext der OWC. Im Rahmen der Arbeit wird ein Framework

Abb. 1.2. Vereinfachtes Kanalmodel, wobei die Schwerpunkte der Arbeit hervorgehoben sind.

zur Berechnung von Freiformlinsen entwickelt, welches in Bezug auf Li-Fi bisher einzigartig ist. Mit Hilfe verschiedener Entwurfsbeispiele wird das Potential dieser Linsen für die OWC untersucht. Das Framework nutzt *Ray-Mapping*-Algorithmen zur Konstruktion von Transmitterlinsen. Für den Entwurf von Receiverlinsen werden auf dem Randstrahlenprinzip aufbauende Methoden implementiert. Ein Entwurfsbeispiel untersucht, wie sich die optische Effizienz und die Homogenität innerhalb des Sichtfelds (FOV, engl. *field of view*) durch den Einsatz von totalreflektierenden Linsen verbessern lässt. Ein weiteres Entwurfsbeispiel prüft, wie sich die Augensicherheit mit Hilfe einer Mehrwegelinse verbessern lässt. Darüber hinaus wird untersucht, inwiefern Freiform-Fresnellinsen in Verbindung mit dem untersuchten AFE für eine Infrastruktur-zu-Infrastruktur-Kommunikation (I2I) genutzt werden können. Diese Arbeit verknüpft die elektronischen und optischen Aspekte. So erlaubt es das Framework, die Entwicklung der Datenrate über dem FOV darzustellen.

1.3 Aufbau der Arbeit

Das nachfolgende Kapitel 2 legt den Stand der Technik dar. Hierbei wird die OWC zunächst kategorisiert. Im Anschluss werden Anwendungen betrachtet und ein Überblick über die Standardisierung und Forschung gegeben. Kapitel 3 beschäftigt sich mit den physikalischen und technologischen Grundlagen der OWC. Kapitel 4 befasst sich anschließend mit einer detaillierten Untersuchung des AFE. Diese Betrachtungen sind zunächst allgemein gehalten und werden danach auf konkrete Entwurfsbeispiele bezogen. Die Schaltungsbeispiele werden anschließend messtechnisch untersucht und die Ergebnisse entsprechend diskutiert. Im Kapitel 5 wird das im Rahmen dieser Arbeit entwickelte Framework zum Entwurf von Freiformlinsen beschrieben. Es werden verschiedene Entwurfsbeispiele für Transmitter- und Receiverlinsen betrachtet, um das Potential von Freiformlinsen für die OWC zu evaluieren. Im Anwendungskapitel 6 wird die Funktionalität des untersuchten AFE in realer Umgebung nachgewiesen. Hierzu wird das AFE in ein konventionelles Ethernetnetzwerk eingegliedert und so mobile Kommunikation sowie Ortung in Innenräumen demonstriert. In einem weiteren Anwendungsbeispiel wird der entwickelte Transceiver mit Freiform-Fresnellinsen kombiniert, um I2I zu ermöglichen. Abschließend werden die Ergebnisse dieser Arbeit in Kapitel 7 zusammengefasst und ein Ausblick in die Zukunft der OWC gegeben.