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Abstract
Unmanned and manned aerial vehicles have been used extensively for civilian purposes
over the past few decades, thanks to unprecedented advances in micro-electro-mechanical
systems (MEMS) sensors and microprocessors. One can find various sensors in aerial
vehicles, such as triaxial accelerometers, triaxial gyroscopes, triaxial magnetometers,
GPS modules, and pressure sensors. The digital sensor signals are processed in mi-
croprocessors using sensor fusion techniques, which provide navigation capabilities for
aerial vehicles.

In this thesis, we present an approach of design and implementation of a sensor fusion
algorithm for fixed-wing aerial vehicles. The flight state variables of the sensor fusion
algorithm are the position, velocity, orientation of the aerial vehicle, biases of an inertial
measurement unit (IMU), and wind speed. The state dynamics are nonlinear due to the
orientation. Therefore, we propose to apply an extended Kalman filter (EKF) using in-
ertial measurements (acceleration and angular velocity), GPS position, static pressure,
dynamic pressure, and air temperature measurements. In addition to these measure-
ments, two aerodynamic constraints (side force and sink rate polar) of a fixed-wing
airplane are used for the wind estimation using an assumption of a wind triangle.

We propose not to use magnetic measurements since they are easily distorted by un-
known magnetic fields of other electronic devices in the vicinity. The distortion is not
well compensated, if at all. Without heading information from the magnetic measure-
ments, the horizontal wind cannot be uniquely determined in a single wind triangle.
Therefore, we investigate the wind estimation in the proposed EKF without a magnetic
sensor. Using an analytical observability analysis, we prove that the wind is observable
in the case of a time-varying true airspeed (TAS) direction, which is commonly fulfilled
in practical flights. To this end, a numerical study of the observability of the EKF
using measured flight data of a manned glider shows that the state vector is effectively
observable independent of flight maneuvers. We show that the EKF works without a
magnetometer. Furthermore, in order to study the tracking behavior of the individ-
ual state variables, we present a method based on the triangularization of the system
transition matrix. We show that the wind estimation error can converge in flights with
dynamically changing TAS direction. The TAS direction determines which direction of
the wind estimate converges faster.

A further key contribution of this thesis is the experimental evaluation of the proposed
EKF using recorded flight measurements in different manned gliders under realistic envi-
ronmental conditions, e.g., smooth air and turbulent atmospheres. The pilot-in-the-loop
strategy allows us to collect and label various flight maneuvers, including gliding, soaring
in thermals, uncoordinated turning, stall, and free-fall flight. The results show that the
EKF can accurately estimate the position, ground speed, orientation, IMU biases, and
wind speed in real-time. The horizontal wind estimate is verified by circle shifting in a
thermal soaring of a glider. The vertical wind estimate is instantaneous and accurate
and can be used to indicate a strong updraft. In addition, we determine the side force
coefficient of the side force model using uncoordinated turnings. As a byproduct, the
EKF can estimate the angle of attack using a three-dimensional TAS vector. The AoA
estimates are evaluated using two specific flight maneuvers, i.e., stall and free-fall flight.
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1. Introduction

1.1. Motivation
Unprecedented advances in low-cost micro-electro-mechanical systems (MEMS)-based
sensors and powerful microprocessors over the past few decades have made the fiction
of robotics a reality. For mobility and economic efficiency, manned and unmanned
aerial vehicles have been used in a large number of applications such as search and
rescue [EEW13], inspection [Den+14], agriculture [Zil+18], parcel delivery [AS18], and
urban air mobility [RS20].

Nevertheless, the application of unmanned aerial vehicles (UAVs) faces many chal-
lenges, such as limited onboard energy supply. Inspired by birds, the turbulent atmo-
sphere offers opportunities for energy harvesting of fixed-wing airplanes. For example,
updrafts and spatially and temporally varying wind fields facilitate soaring for birds
and manned gliders. In this regard, precise and real-time local air mass movement is
of crucial importance for aerial vehicles to maximize energy gain. Like birds, manned
gliders make tight circling in updrafts appearing in narrow columns of rising air to
gain altitude. Recently a study carried out by DLR has shown that formation flight
can reduce fuel consumption by up to five percent and the climate impact by up to
25% [Luf21]. By imitating migratory birds, airplanes fly in V-shaped formations where
the airplanes at the rear can use the vortices produced by those in front. Formation
flight requires precise aircraft position and attitude control, which demands reliable and
robust estimation of position, attitude, and local air mass turbulence.

The dynamics of aircraft or rotary drones are discussed based on quasi-steady at-
mospheric conditions assuming small perturbations around steady-state flight condi-
tions [Cau11]. However, the stability and control of aircraft are affected by atmospheric
disturbances, including steady wind, wind shear, gusts, and updrafts. These distur-
bances can be modeled as 3D air mass movement (or wind velocity). From an aircraft’s
point of view, the atmospheric disturbances are treated as perturbations to the control
system and may lead to undesired response dynamics and even instability. Conse-
quently, the disturbances have an impact on the response of the control and estimation
system. Therefore, it is necessary to evaluate flight state estimation under representa-
tive non-steady atmospheric conditions. Moreover, it is crucial to estimate the 3D wind
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(a) Glider ASH 25. Photo: Heinrich Meyr. (b) The rear aircraft is surfing on wake vor-
tices [Luf21].

Figure 1.1.: Energy exploitation of fixed-wing aircraft using local atmospheric turbulence.

velocity in the flight state estimation.
The successful operation of aerial vehicles requires accurate and robust state estima-

tion providing necessary flight variables for further decision-making procedures. The
diversity of applications requires a flexible sensor fusion framework that allows for the
rapid transfer of new concepts to implementation in onboard hardware. For the thesis,
the focus is placed on the flight state estimation of fixed-wing airplanes.

1.2. Background
Unmanned Aerial Vehicles

UAVs are generally divided into rotary or fixed-wing according to the wing type. Rotary
wing UAVs have been widely used in civilian applications like photography due to their
low cost, high maneuverability, and lightweight. On the other hand, fixed-wing UAVs
have high speed, long-endurance, and a large payload. Either rotary or fixed-wing
UAVs are equipped with multiple sensors and actuators. Onboard flight control systems
or autopilots perceive real-time sensor signals, compute their state variables and give
control commands to actuators.

State Variables

A UAV undergoing six degrees of freedom motion flies in atmospheric turbulence subject
to limited onboard measurements. State estimation can enhance the navigation and
control capabilities in real flight conditions. The state of an aerial vehicle often refers
to a set of variables including three major categories:

1. Vehicle’s motion. Position, velocity, acceleration, attitude, and angular velocity.

2. Environmental variables. Wind speed, pressure at mean sea level, local gravity,
air density, and landmark positions.

3. Sensor calibration related quantities. Sensor bias, noise, and scale factor.
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The state of the system can be a combination of the listed variables, including but not
limited to any of the above, which depends on actual applications. In the application of
simultaneous localization and mapping (SLAM), the state variables include landmark
positions as environmental variables [SSC90]. State estimation is about reconstructing
the underlying state of a system using a series of measurements and an a priori model of
the system [Bar17]. More important is that it can reconstruct unmeasurable variables
such as wind speed.

Sensor

Sensors can be divided into two categories: interoceptive and exteroceptive [Bar17, Sec.
1.2]. The interoceptive sensors measure quantities relating to stimuli produced within
the rigid body. Typical examples include accelerometers that measure acceleration and
gyroscopes that measure angular rate. A Pitot tube is used in aviation to measure the
aircraft’s airspeed. The exteroceptive sensors measure quantities relating to stimuli re-
ceived by the rigid body from the environment. For example, Global Positioning System
(GPS) receivers provide positions in the World Geodetic System (WGS). Vision sensors
perceive the range and bearing of landmarks. In avionics applications, pressure sen-
sors are used to measure atmospheric pressure. A magnetometer measures the ambient
Earth’s magnetic field to derive a heading reference.

Due to cost and weight constraints, the precision of onboard sensors of UAVs and small
airplanes cannot be compared to their counterparts used in commercial airlines and
military applications. Some of these measurements, like accelerometer and gyroscope,
typically are strongly noisy, biased, and scaled [TPM14]. Moreover, GPS measurements
are unreliable as due to obstacles (or in indoor environments), the line of sight view
to the satellites can be lost. Finally, a magnetometer often provides very imprecise
measurements due to disturbance by other magnetic fields nearby [Roe+05b].

Nonlinear Filtering

State estimation is a problem that is nonlinear and complex due to nonlinear kinematics
of the aerial vehicle and nonlinear measurement models. In order to tackle the nonlinear
estimation, we briefly introduce several nonlinear filtering techniques existing in UAV
applications.

A complementary filter comprises a low-pass and a high-pass filter [MHP08]. For at-
titude estimation, the low-pass filter dealing with accelerometer measurements is com-
plementary to the high-pass filtering on high-frequency gyroscope data [MHP08]. The
complementary filter predicts the attitude by integrating angular rates and corrects it
based on the gravitational direction from the accelerometer. However, the complemen-
tary filter can fail in steep turns since the accelerometer does not measure a bias-free
gravitational direction during turning. Therefore, Euston et al. [Eus+08] developed a
nonlinear complementary filter with additional airspeed measurements for the attitude
estimation in turning. The airspeed measurements are used in a simplified centripetal
force model to estimate a bias-free gravitational direction. The filter is designed for
UAVs in equilibrium states and is limited in aggressive flight maneuvers like free-fall
and slipping. The simple framework specifies that the filter cannot be easily extended
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(a) Linearization of nonlinear function around
nominal trajectory via Taylor series expansion
in EKF.

(b) Unscented transform in UKF: select a set of
sigma points including the nominal trajectory;
transform the sigma points using nonlienar
function; compute Gaussian from the trans-
formed points.

Figure 1.2.: 2D example: mean and covariance propagation in EKF and UKF (adapted
from [WV00]).

to include other measurements and state variables. However, the complementary filter
is simple and easy to implement on systems with little computational power.

Extended Kalman Filtering (EKF) has been widely used in nonlinear state estimation
for robotics [LMS82; Wen+06; BS08; HMR10; Mar11; LS12]. An EKF linearizes the
nonlinear system equations and measurement model by a first-order Taylor series expan-
sion around the nominal state trajectory (see Fig. 1.2a). The state estimate is predicted
using the nonlinear system equations, and the covariance estimate is propagated using
the linearized system equations. Then the state and covariance estimates are updated
using the linearized measurement models. Therefore, one of the prerequisites for using
EKF is that the linearization errors must be small enough, which requires a high update
rate of the EKF. The EKF is proven to be a flexible tool with an extensive heritage that
can incorporate a high variety of measurements [CMC07].

In the EKF, the linearization errors can result in sub-optimal performance and some-
times the divergence of the filter [VW04]. To address the issues, Julier et al. [Jul97]
developed Unscented Kalman Filter (UKF), also known as Sigma-Point Kalman Filter
(SPKF). Instead of linearization of nonlinear equations around the nominal state vari-
ables, the UKF calculates a set of sigma points and maps them through the nonlinear
equations, as shown in Fig. 1.2b [SE04; Shi06]. Compared to the EKF, the transformed
random variables cannot be Gaussian, as shown in Fig. 1.2b. This transformation is
called unscented transform and does not require analytical Taylor series expansion of the
nonlinear functions [Van04]. Crassidis [Cra06] used the UKF to estimate the position,
velocity, attitude, and sensor bias with GPS and inertial measurements. The simula-
tion results showed that the UKF could handle a larger initialization error of the state
than the EKF. Considering that the limiting state estimates of the EKF and UKF have
the same order of accuracy [RGN13] and that the UKF requires more computational
power [Van04], the EKF is a good candidate for sensor fusion framework.

The random variables are assumed to be Gaussian in the EKF, while some camera
sensors can produce non-Gaussian noises [STG07]. To deal with non-Gaussian noises
and nonlinear system and measurement models, particle filtering is a kind of Monte Carlo
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method [Del97] and is used in robotics for low-dimensional systems [Thr02; Bar17]. A
particle filter selects a set of samples (particles) to approximate the distribution of a
stochastic process given noisy measurements. Each particle is weighted and transformed
through the nonlinear system model to approximate the distribution of the posterior
stochastic process. Gustafsson et al. [Gus+02] provided a framework for positioning,
navigation, and tracking problems based on particle filtering. The particle filter may
not be practical in embedded systems with limited processing resources due to the heavy
computational load [Shi06].

Atmospheric Disturbances

The definition of atmospheric disturbances is related by their temporal and spatial
characteristics and energy content or intensity [Coo12]. In addition, the effect of dis-
turbances on flights also depends on the size and shape of the aircraft, its speed, and
altitude [Coo12]. Therefore it is difficult to describe atmospheric disturbances by precise
mathematical models adequately. The magnitude of atmospheric disturbances can be
classified as light, moderate, severe, and extreme [FAA14]. Here we provide examples
of some representative atmospheric disturbances. Fig. 1.3 depicts exemplary heavy at-
mospheric turbulence during one of our glider flights. For crosswind during take-off and
landing, a wind speed less than 5 m/s can be considered as light intensity, while a wind
between 5 and 15 m/s is moderate and between 15 and 23 m/s is severe [Coo12].

Figure 1.3.: Glider flying in heavy atmospheric turbulence. Photo: Heinrich Meyr.

Glider Soaring

Gliders take advantage of atmospheric turbulence to maintain and gain height. Vertical
wind in a thermal is the primary energy source for gliders. Fig. 1.4a shows a typical
glider soaring using a thermal. The pilot optimizes the glide speed and descends until it
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(b) Glider speed polar.

Figure 1.4.: Glider performance.

reaches a point at which there is a strong updraft, then does a circling climb to exploit
energy from the air mass.

Speed Polar

In still air, the glider performance can be characterized by its speed polar diagram,
which illustrates the horizontal airspeed versus the sink rate, as shown in Fig. 1.4b. The
optimum glide speed is determined when the ratio between the horizontal airspeed and
sink rate is maximum. Illustratively, this point is the intersection of a tangent starting
from the origin to the polar. Note that this optimum glide speed is calculated in still
air. In the presence of horizontal wind or vertical wind, the best glide speed must be
computed based on adjusted speed polar (see [Rei93] for more details).

Total-Energy Variometer

A total-energy (TE) variometer is a typical instrument equipped on a glider to measure
the climb or sink of the vertical air mass movement, i.e., the updraft or the vertical
wind speed [Rei93, p. 131]. The vertical air mass movement can be used to indicate the
thermal strength and thus impacts the soaring strategy. Initially, a simple variometer
only measures the climb rate of the glider by measuring the rate of static pressure change.
However, it is impossible to measure updrafts from the glider’s climb rate since the climb
rate can change due to control, such as pushing or pulling the glider’s stick [Rei93].

However, the air mass is not always calm or smooth. For example, in gusty weather,
when passing through a wind shear or in the near-ground layer, the airspeed, determined
by dynamic pressure, may change suddenly and drastically [Din03]. In this case, the
Pitot tube reacts to a horizontal velocity change caused by gusts. Consequently, the
TE variometer displays an erroneous climb or descent of the vertical air mass movement
until the glider reaches equilibrium again.

1.3. Outline and Contributions
The overall objective of this thesis is to design, analyze and implement a robust sensor
fusion algorithm for flight state estimation of fixed-wing aerial vehicles. Since the kine-
matic dynamics of aerial vehicles are nonlinear, we study nonlinear state estimation for
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inertial navigation systems. Furthermore, we focus on the observability of atmospheric
disturbances, i.e., 3D air mass movement, in the sensor fusion framework. We analyze
the algorithm in terms of observability, reachability, and tracking behavior. As a user
case, we implement the algorithm on commercial avionics devices and use manned glid-
ers for experimental verification and validation. Nevertheless, the developed algorithm
is applied to other fixed-wing UAVs.

Outline

Chapter 2 presents a methodology for the design and development of sensor fusion al-
gorithms from concept to inflight testing. First, we define the flight state variables:
the position, velocity, attitude of aerial vehicles, accelerometer bias and gyro bias, and
3D air mass movement in terms of wind velocity. The estimation of these variables is
tightly addressed in a multisensor framework fusing inertial, pressure, and GPS measure-
ments. The second stage is to identify possible filtering techniques, e.g., we use extended
Kalman filtering in the thesis. We develop a toolchain for modeling and simulation of
the sensor fusion algorithm. The toolchain includes a prototype in MATLAB and a
simulator that is written in C language for embedded applications. Various developing
tools are introduced to accelerate the implementation and analysis of the algorithm.

Chapter 3 introduces the mathematical foundations for developing inertial navigation
systems and nonlinear filtering. Then, detailed modeling of the system state variables
and the measurements are provided. Since the system is nonlinear due to the atti-
tude dynamics, we use error-state modeling of the attitude. The propagation of the
error-state model can be approximated as a linear model. The flight state estimation is
implemented within an EKF by linearizing and discretizing the nonlinear system around
a nominal trajectory. The EKF runs at a sampling rate of 100 Hz, which is larger than
the inverse of the dominant time constant of an aerial vehicle in terms of seconds. This
estimator is based on the excellent work by Leutenegger [Leu14; Leu+14]. Different
from Leutenegger’s approach, we do not use a magnetometer since any magnetic mate-
rials near the magnetometer lead to a distortion of the local magnetic field and cause
errors in the orientation estimation [Roe+05b].

Chapter 4 investigates the observability and reachability of the nonlinear state es-
timation described in Chapter 3. We use a minimal set of measurements on fix-wing
aircraft, including inertial, pressure, and GPS signals. We do not use a magnetome-
ter for heading measurements. The estimation of position, velocity, and attitude has
been extensively analyzed in [Cra06; LS12; Sol12; EKK15]. In this chapter, the focus
is placed on wind estimation without using a magnetometer based on the concepts of
observability and reachability. We first introduce the nonlinear observability and reach-
ability and their application in an EKF. We propose to analyze the observability using
singular value decomposition. The singular values imply the observability dimension,
whereas the right singular vectors provide detailed information about which state vari-
ables are involved in the (un)observable subspaces. For example, we adopt a simplified
2D system estimating 2D position, 2D velocity, and 2D wind velocity with pressure and
GPS signals in the measurement update of the simplified 2D EKF. The observability
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results show that the 2D wind is observable when the flight heading or the wind changes
without a magnetometer. This condition is easily fulfilled in practice, which is verified
against measured flight data of a manned glider.

Chapter 5 addresses the dynamic tracking property of the EKF. We first derive the
state error transition equation via linearization and discretization of the nonlinear sys-
tem. Then the dynamic tracking behavior of the state error can be reduced to the
stability of a linear time-varying system. In the thesis, we focus on the stability of the
deterministic state error, which determines the convergence of the system. We study
the convergence of the state error in terms of the Euclidean norm of the transition ma-
trix. This approach gives an overall statement about the stability of the system. In
order to investigate the tracking property of individual state variables, we reduce the
time-varying system into an upper triangular system via a unitary transformation. The
unitary transformation preserves the stability of the original system. The convergence
of the system can be seen from the elements in the diagonal of the triangular system.
Furthermore, the largest element in the diagonal indicates the dominant time constant
of the system. We analyze the dynamic tracking behavior of the simplified 2D EKF
using simulated flight data.

Chapter 6 demonstrates the onboard performance of the complete EKF on manned
gliders. The focus is on real-time performance in various environmental conditions,
including smooth air and the turbulent atmosphere. We show that the flight state vari-
ables are well tracked using typical gliding flights. In particular, the EKF can provide
3D real-time wind estimates under atmospheric turbulence. We demonstrate the impact
of wind modeling on wind estimation. Furthermore, the EKF is evaluated in uncoordi-
nated turning, stall, and free-fall flights. The flight in uncoordinated turning is used to
verify the aircraft modeling, while the stall and free-fall flights show that the EKF can
estimate the angle of attack (AoA).

Finally, Chapter 7 summarizes the achievements of this thesis and provides possible
directions for future research.

Contributions

In this thesis, we propose an extended Kalman filter using multiple sensors to estimate
position, ground speed, orientation, wind speed, and IMU biases for fixed-wing UAVs
and airplanes. In order to use the EKF in aviation applications, we develop a toolchain
for modeling and simulation of the sensor fusion algorithm. We can develop, implement,
and test the EKF in simulation and hardware based on the toolchain.

Due to the nonlinearity of a UAV kinematic system, we linearize and discretize the
nonlinear system around a nominal trajectory. The novelty of the EKF is not using the
magnetometer or dual GPS, which provides the heading of the UAV. It is crucial to
have the heading measurements to differentiate the direction of the ground speed and
the true airspeed. However, the magnetometer is sensitive to the local magnetic field of
other electric devices. The dual GPS requires the complicated installation of two GPS
antennas.
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We present an observability analysis of the nonlinear system based on the singular
value decomposition. The observability results show that the wind is observable when
the flight heading or the wind changes without the heading measurement. Qualitatively,
the wind is observable when the rate of change of the heading angle is larger than
one degree per second. Due to the random nature of the air mass and the control
of the trajectory, the heading fluctuations commonly exist in practical flying. The
experimental evaluation of manned gliders shows that the wind estimation does not rely
on the magnetometer.

We show that the flight state variables are well tracked using diverse gliding flights. In
particular, the EKF can estimate 3D real-time wind under atmospheric turbulence, e.g.,
thermals and gusts. We compare the 3D wind estimates against a total-energy (TE)
variometer measuring the vertical wind. The EKF tracks the vertical wind a couple of
seconds faster than the TE variometer. Furthermore, the EKF is not affected by flight
maneuvers and gusts. As a byproduct, the EKF is able to track the angle of attack of
a fixed-wing airplane, which is verified with stall and free-fall flights.
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