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Abstract

The main topic is the dynamic resource allocation in embedded systems, espe-cially the allocation of computing time and network traffic on an multi processorsystem on chip (MPSoC). The idea is to dynamically schedule a mobile commu-nication signal processing pipeline on the chip to improve hardware resourceefficiency while not dramatically improve resource consumption because of dy-namic scheduling overhead. Both software and hardware modules are exam-ined for resource consumption hotspots and optimized to remove them. Sincesignal processing can usually be described with the help of static data flow (SDF)graphs, the dynamic handling of those is optimized to improve resource con-sumption over the commonly used static scheduling approach. A hybrid dy-namic scheduler is presented that combines benefits from both processing net-works and task graph scheduling. It allows the scheduler to optimally balanceparallelization of computation and addition of dynamic scheduling overhead.The resulting dynamically created schedule reduces resource consumption byabout 50%, with a runtime increase of only 20% compared to a static sched-ule. Additionally, a distributed dynamic SDF scheduler is proposed that splitsthe scheduling into different parts, which are then connected to a schedulingpipeline to incorporate multiple parallel working processors. Each schedulingstage is reworked into a load-balanced cluster to increase the number of parallelscheduling jobs further. This way, the still existing dynamic scheduling bottle-neck of a centralized scheduler is widened, allowing handling 7x more proces-sors with the pipelined, clustered dynamic scheduler for a typical signal pro-cessing application.



The presented dynamic scheduling system assumes the presence of threedifferent communication modes between the processing cores. When emu-lated on top of the commonly used remote direct memory access (RDMA) pro-tocol, performance issues are encountered. Firstly, RDMA can neatly be usedfor single-shot point-to-point data transfers, like used in task graph scheduling.Process networks usually make use of high-volume and high-bandwidth datastreams. A first in first out (FIFO) communication solution is presented that im-plements a cyclic buffer on both sender and receiver to serve this need. Thebuffer handling and data transfer between them are done purely in hardware toremove software overhead from the application. The implementation improvesthe multi-user access to area-efficient single port on-chip memory modules. Itachieves 0.8 of the theoretically possible bandwidth, usually only achieved witharea expensive dual-port memories. The third communication mode defines alightweight message passing (MP) implementation that is truly connectionless.It is needed for efficient inter-process communication of the distributed andclustered scheduling system and the worker processing units’ tight coupling. Ahardware flow control assures that an arbitrary number of senders can spon-taneously start sending messages to the same receiver. Yet, all messages areguaranteed to be correctly received while eliminating the need for connectionestablishment and keeping a low message delay.The work focuses on the hardware-software codesign optimization to increasethe uncompromised resource efficiency of dynamic SDF graph scheduling. Spe-cial attention is paid to the inter-level dependencies in developing a distributedscheduling system, which relies on the availability of specific hardware-acceleratedcommunication methods.



Kurzfassung

Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebettetenSystemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehrauf einem MPSoC. Die Idee besteht darin, eine Pipeline für die Verarbeitung vonMobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienzder Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch desdynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auchHardwaremodule werden auf Hotspots im Ressourcenverbrauch untersuchtund optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signal-verarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben wer-den können, wird deren dynamisches Scheduling optimiert, um den Ressour-cenverbrauch gegenüber dem üblicherweise verwendeten statischen Schedu-ling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, derdie Vorteile von Processing-Networks und der Planung von Task-Graphen kom-biniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Paral-lelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwägen. Der resultierende dynamisch erstellte Schedulereduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Ver-gleich zu einem statischen Schedule nur um 20% erhöht wird. Zusätzlich wirdein verteilter dynamischer SDFScheduler vorgeschlagen, der das Scheduling inverschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, ummehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu ei-nem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufen-den Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhande-ne Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers



entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler für eine typische Signalverarbeitungsanwendung verwen-det werden können.Das neue dynamische Scheduling-System setzt das Vorhandensein von dreiverschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen vor-aus. Bei der Emulation auf Basis des häufig verwendeten RDMA-Protokolls tre-ten Leistungsprobleme auf. Sehr gut kann RDMA für einmalige Punkt-zu-Punkt-Datenübertragungen verwendet werden, wie sie bei der Ausführung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Da-tenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO ba-sierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl imSender als auch im Empfänger implementiert, um diesen Bedarf zu decken.Die Pufferbehandlung und die Datenübertragung zwischen ihnen erfolgen aus-schließlich in Hardware, um den Software-Overhead aus der Anwendung zu ent-fernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nut-zer auf flächen-effiziente Single-Port Speichermodule. Es werden 0,8 der theo-retisch möglichen Bandbreite, die normalerweise nur mit flächenmäßig teure-ren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus defi-niert eine einfache MP-Implementierung, die ohne einen Verbindungszustandauskommt. Dieser Modus wird für eine effiziente prozessübergreifende Kom-munikation des verteilten Scheduling-Systems und der engen Ansteuerung derrestlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher,dass eine große Anzahl von Sendern Nachrichten an denselben Empfänger sen-den kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen wer-den, ohne dass eine Verbindung hergestellt werden muss und die Nachrichten-laufzeit gering bleibt.Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hard-ware und Software, um die kompromisslose Ressourceneffizienz der dynami-schen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf dieAbhängigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems ge-legt, das auf der Verfügbarkeit spezifischer hardwarebeschleunigter Kommuni-kationsmethoden beruht.



1 Introduction

1.1 Motivation

With every iteration of mobile communication standards, the complexity of thedigital signal processing increases. In addition, the dynamic range of the pro-cessing complexity increases as well. That means, a base station has to be ableto handle a very inhomogeneous set of connections in terms of required pro-cessing demands. In the fifth-generation (5G) the baseband digital signal pro-cessing covers a dynamic range of six orders of magnitude and —as far as weknow today— this trend will continue in future standards. Because the time-frame for doing the signal processing stays constant a need for much higherprocessing power is needed. With the increase of clock frequencies being bothmore and more difficult to do and power consuming, parallelizing computationseems a promising alternative. Building a specialized application specific inte-grated circuit (ASIC) implementation for a problem like done in [45, 85, 1] toexploit parallelism will always result in a poor efficiency with regard to utilizedhardware, because it has to be dimensioned for the worst (i.e. most demand-ing) case, leaving a significant fraction of hardware unused in the average case.However, the 3rd generation partership project (3GPP) defines a mobile com-munication channel to be chopped into transmission time intervals (TTIs), whichmakes the data a stream of basically independent data packets. The processingof each packet can easily be modeled as an static data flow (SDF) graph, allowingto process it on a general purpose multi processor system on chip (MPSoC). Bydynamically assigning resources, hardware can be used more efficiently, savingcosts at production as well as operation of base stations and terminals alike.
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1 Introduction

Running SDF graphs on MPSoCs is usually done using static scheduling, whichis itself not efficient in terms of hardware utilization, at least in some situations.A typical signal processing SDF graph has a sequential start and end with a par-allelizable hotspot somewhere in the middle. To fully parallelize the hotspot theschedule has to allocate many processors, which will be idle most of the time—except of the brief hostspot phase— which makes them poorly utilized, thusthe schedule inefficient. With dynamic scheduling, however, processors can befreed immediately after the hotspot, allowing the next graph to compute it’shotspot fully parallel while still finishing the first graph sequentially.
Dynamic scheduling and hardware allocation has the potential to exploit par-allel processing resources to stitch the needed computation pipeline togetheron the fly. The processing pipeline for each TTI describes exactly the neededresources so that it will only occupy needed resources. The goal of doing thisis to optimize resource utilization. It is expected that the dynamic resource al-location has a negative impact on the processing time on a single graph dueto the dynamic scheduler. The scheduling will introduce an amount of over-head effort1that has to be processed alongside the payload computation. Adynamic system may trade increased parallelism to speed up computation andadditional overhead to decreasing efficiency. The ratio of parallelizing speedupand overhead slowdown effect is situation dependent and has to be consideredin the live system.
The efficient utilization of the available resources allows to save power con-sumption e.g. by switching off unused computation units. Exploiting the paral-lelism of implemented algorithms allows lower clock frequencies compared toa serial implementation. A lowered clock frequency has a direct impact on thepower consumption of a respected system.
In order to apply the dynamic scheduling and parallelization, every layer ofthe computation stack has to be optimized. Usually, the optimization of soft-ware assumes the hardware to be fixed. The algorithm is slimmed, or replaced,to better match the situation. In extreme cases, the programming languagemay be switched to eliminate unwanted factors like an interpreter layer of anindeterministic garbage collector. But, an attribute like real-time capability andalso efficiency depends on the whole stack. When the application has to run onunsuitable hardware or operating system (OS), the upper layer may have diffi-culty creating an efficient execution profile. The problem can be explained withAmdahl’s Law [3]. It describes that the impact, an optimization iteration has on

1“effort” is an abstract measure of the work that has to be done to execute a computer (sub)program.
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1.1 Motivation

the whole program is dependent on the relative size of the optimized part tothe entire program. Parameters are the fraction of the original program f , thatcan be sped up (i.e. parallelized) and the speed up factor p by which this fractionis sped up. The total speedup then can be calculated by

S(p, f ) = 1
(1 – f ) + f

p

which has an upper bound depending on the fraction f for p → ∞ of:

Smax(f ) = 1
1 – f

This effect does not only apply within an application but also vertically throughthe computation stack. The usage of an operation provided by an underlyinglayer causes an amount of resource consumption. When optimizing the opera-tion’s implementation, the overall effect is dependent on the frequency the op-eration is used. A frequently used operation can represent a significant portionof the total execution time and may be worth optimizing. This kind of operationmay be a system call into the OS or activation of a hardware accelerator.
Another type of resource consumption of underlying layers is not dependenton the hosted application, but instead occupies a static amount of resources.For example, a preemptive scheduler consumes a fixed amount of central pro-cessing unit (CPU) time by timed context switches, independent of the num-ber or type of applications hosted. Also, mixed resource consumption may oc-cur like a garbage collector that is invoked periodically, thus consuming a fixedamount of time. The amount of CPU time a garbage collector invocation con-sumes depends on the applications running and their behavior, e.g. how muchobjects they are allocating/freeing.
Each operation is the combination of operations from lower layers. The re-sources consumed by an operation are the sum of resources of all operationsused by this operation. To optimize an operation identified as a hotspot, it isnecessary to regard the current and decent to lower the layers. Examining alloperations from all layers and their usage frequency can help find the cause ofhigh resource consumption. It may help to find operations in lower layers thatmay be easier to optimize than the initial hotspot operation itself but still helpto make it more efficient.

3



1 Introduction

1.2 The Multiprocessor System on Chip Architecture

The concept of a MPSoC is nowadays a common one. The class of MPSoC ar-chitectures includes significantly different types with specific focuses. One pur-pose of a significant sub-field of MPSoCs is the ease of integration and usageefficiency. A microcontroller is designed to be easily integrated onto customembedded printed circuit boards (PCBs). They usually include many commu-nication capabilities removing the need for additional interfacing hardware. Ithelps keep the PCB design and development simple and cheap and lower powerconsumption by making additional chips unnecessary. Another famous MPSoCfield covers processing platforms for single-board computers like smartphones.These chips resemble more a traditional CPU from desktop personal comput-ers (PCs). Usually equipped with a multicore central processor, the main task isto host a standard OS like Linux. Similar to the microcontroller, additional com-ponents are included in the chip to save PCB complexity, space, and power. Theadditional components may vary from the specific application. For smartphonetargeting chips, mobile communication modems and multimedia acceleratorsare the largest non-general purpose processing kernels.
Usually, an MPSoC is heavily overprovisioned —for one reason or another—in the sense that a significant fraction of the chip area is not or only seldomlyused. A microcontroller, for example, often contains a multitude of peripheralinterfaces. Most products/projects using a microcontroller only use a small frac-tion of the available interfaces, thus hardware logic. But still using a single micro-controller is usually more power-efficient than using multiple chips, each witha specific task. It is cheaper too because a microcontroller can be produced invast quantities due to its fit for different tasks. To fit enough products/projectsto justify the large quantities, it contains as many peripheral options as possible.Although most projects will only use a fraction of the chip’s vast range of func-tionality, it assures the efficiency of the chip. The multimedia system on chip(SoC) makes use of the same principle by including certain special case logic likea video coding accelerator or a crypto module. It is beneficial to have an ac-celerator for a special task that may only be activated very seldomly but worksefficiently. Again, the cheapness of logic on an ASIC allows for very special andmaybe rarely used units and still generate a benefit for the application.
The MPSoC platform that shall be regarded here is a bit different in its fo-cus, and therefore its architectural concept. While the mentioned MPSoCs gettheir name from the fact that they integrate not only a CPU on a chip but also

4



1.2 The Multiprocessor System on Chip Architecture

a set of peripheral units, the class regarded here focuses on the execution ofmultiple (sub)-programs at the same time. Of course, a multimedia SoC can —and does— have multiple cores and can run numerous parallel programs. Themode of operation, however, is similar to a desktop processors multiprocessingapproach. Multiple processing cores accessing one shared memory resemblingsomething like a complex but only single von-Neumann-computer. The dis-tributed SoC in contrast, features a set of multiple von-Neumann-computersthat are, except for a shared communication sub-system isolated from eachother. In a way, this kind of chip could be called “Systems-on-Chip” with empha-sis on the plural of systems cf. to the single system of most controller SoCs.Every Von-Neumann-System in such a system of systems must —to adhere tothe definition [79]— feature a processing unit, a memory, and a communicationunit. Concerning the system of systems, all three components are exclusive tothis system and cannot be used by any other system. Calling this internal systema processing element (PE) makes the enclosing system a PE-cluster. The clusternow resembles a network of computers within a chip. A set of PEs representingindividual and independent computers connected with a network of particulartopology and technology. It allows the PEs to communicate by providing —onthe lowest level— a way of sending messages carrying data from any PE to anyother.A PE can be of various types and have variable functionality. The most appar-ent PE would be a general-purpose computing unit. At the very least, it featuresa standard processor and local —on-chip— memory allowing the isolated exe-cution of a program binary. Of course, a PE can have a more complex design,e.g. featuring multiple processors of different types. The memory may as wellbe a caching structure instead of a closely coupled memory that fetches cachelines in case of misses over the network from a remote memory. Instead, oreven in addition to the general-purpose CPU a PE may also include special pur-pose accelerating hardware. But also without a general-purpose CPU, it can beuseful being controlled through the networking unit. A CPU-less PE could be,to name a few examples, a DDR-RAM module, an LED-strip, an ethernet port,or and HDMI-controller. To assure the interoperability of these heterogeneousPEs unified access to the connecting network is necessary. For that matter, acommunication protocol is defined that defines how PEs can send messages toeach other.From the network’s point of view, a message is a set of data of a certain length.The transport of a single message can be described as a series of data chunkstransported from router to router. The chunk transporting a certain amount in

5



1 Introduction

one cycle is called a flit. Depending on the network protocol, a flit may containsome of the message data and network control information. A series of flitstraversing the network composes a message that transports the data intendedto be sent by the network user. There are different ways of transporting a mes-sage. In a packet-switched network, each flit passes through the network on itsown. The receiver has to receive flits individually and recompile the message. Incontrast, a circuit-switched network allocates a tunnel through the network fromthe sender to the receiver. Once established, the message can pass through thetunnel as a whole, i.e. all flits directly one after each other. The receiver is surethat the whole message arrives in a continuous stream, and no reassemblinghas to be done. After the head flit, which has to carry the destination address toestablish the tunnel, all other flits may be carrying almost exclusively data anddon’t have to include any header. The main problem of circuit switching is thatdeadlocks may happen in the phase of tunnel establishment. It is possible toavoid deadlocks by construction with a carefully chosen network topology androuting algorithm.
Common choices are ring topologies that may be extended into a forwardand a backward ring. Rings are easy to implement, resource inexpensive, anddeadlock-free. But the average distance between nodes is relatively high, andin some traffic cases, they are not much better than busses. Another commonchoice is an orthogonal mesh network yielding a lower average distance and bet-ter throughput in random traffic scenarios. A routing simple as X-Y is sufficientto assure deadlock freeness even for circuit-switched message transport. Also,other topologies are possible, like hexagonal or octal meshes or multidimen-sional torus networks to further increase network performance. They come,however, with more complex routing and increased chip area costs.
With a network available for sending messages between PEs the MPSoC plat-form must define a communication structure on top to allow the PEs to workwith each other. The communication unit most likely implements a remote di-rect memory access (RDMA) protocol. It allows the PE to copy data from thelocal memory to a remote memory (e.g. the memory of another PE). This verysimple and easy to use protocol stack can be used to model any communica-tion protocol, but only with severe performance degradation. Therefore, a moresophisticated networking unit may be considered to implement other commu-nication protocols like message passing (MP) or data streaming channels.

6
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1.3 Concrete MPSoC Architecture

For the course of this thesis, a specific MPSoC architecture will be defined thatserved as the basis for all considerations. Its purpose is to build an overall pic-ture that serves as a vessel for the discussions on the addressed hotspots. Itwill lean on the Tomahawk architecture, which has been developed and imple-mented in a series of chips for more than ten years. [32, 33, 61, 55] The Tom-ahawk architecture is a well-examined architecture from which many assump-tions and results can be reused to create the models needed for the simulationssetup in this work. The regarded tiled MPSoC architecture consists of a set ofPEs connected by a network on chip (NoC). Each PE features an CPU that usesthree memory ports (one for instruction and two for data) to connect to the localmemory system. The memory system connects the CPUs and the networkingunit to a local set of memory banks with a cross-bar like access controller. Thenetworking unit provides a full-duplex interface to the NoC router. Each routerconnects to exactly one PE and four neighboring routers, resulting in an orthog-onal mesh NoC. Depending on the focused hotspot, the MPSoC componentsare modeled in more or less detail.

1.3.1 NoC

There are numerous examples for NoC implementations [9, 80, 33, 61, 6]. Inthis work, the NoC is supposed to be a performant vessel used to build anothercommunication layer on top. The NoC provides a message transfer mechanism.The NoC will transport messages of arbitrary length to the given destination PE.The NoC uses a circuit-switched routing algorithm, which divides the transmis-sion into two phases. In the first phase, the wormhole is constructed, which mayinclude waiting times due to congestions. The PE is then blocked from movingdata into the network. Once the wormhole is completed, the receiving PE canstart to read data from the NoC interface. For the length of this transmission,the NoC will not obstruct the data flow. Only the PEs are accountable for delayswhen they cannot read or write data fast enough. The NoC interface transports
sflit = 128 bit of data each cycle. The only exception is the first cycle, where aheader of sheader = 64 bit is sent, leaving only sheaddata = sflit – sheader = 64 bitbytes of data. As long as no congestions occur, the latency of the data is de-terministic. The data spends dif = 4 cyl (hardware unit clock cycle [cyl]) mov-ing through the interfaces and asynchronous boundaries until it reaches the
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Figure 1.1: NoC topology with a orthogonal connected mesh network of n = 9routers (R). Each router connects a single PE.
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1.3 Concrete MPSoC Architecture

NoC router. Each hop to a neighboring router takes another dhop = 2 cyl cy-cles. And finally, ascending to the destination PE takes another dif cycles. Thedelay the header flit takes to reach a destination h hops away than becomes
dheader(h) = 2dif + dhoph = 8 + 2h. To get the latency, a message of length s takesto traverse the NoC the number of flits it takes to store the message is added.

dmsg(h, s) = dheader(h) + ⌈ s – sheaddata
sflit ⌉ (1.1)

Arranging a set of n PEs as close as possible to a square (Fig. 1.1) gives an edgelength of √
n. The expected distance of two randomly selected PEs is the sum ofthe distances in X and Y dimension because of the orthogonal NoC connectionpattern. The mean absolute difference of two uniformly distributed variablesis b/3 with b being the upper bound of the distributions. Applied to the n PEsystem the average path length is h = 2 √

n/3. The average message latencyassuming n = 25 PEs and a common signaling message length of s = 64 B(Bytes) then becomes:
dmsg(n, s) = dheader

(2
3

√
n

)
+
⌈

s – sheaddata
sflit

⌉ = 15cyl + 4cyl = 19cyl

1.3.2 Processing Core

The PE consists of one or multiple reduced instruction set computer (RISC) pro-cessors. For the considerations made in this thesis, it is not important whatkind of processor is choosen. However, it is assumed that they may be appli-cation specific integrated processors (ASIPs) with an increased data bandwidthto match the bandwidth provided by the NoC. An ASIP processor is a RISC pro-cessor that has its instruction set architecture (ISA) extended by a set of com-mands to help accelerate an application-specific problem. Often the ISA exten-sion comes with the extension of memory ports, essentially transforming theprocessor into specialized digital signal processor (DSP) [33, 61]. In this plat-form, we will assume an ASIP with two 128-bit data memory ports, as it wasproven in [33, 61] to be a resonable configuration for the targeted applicaiton.It allows optimized algorithms to read-modify-write 16 bytes in a single cycle.This value is important to mention because the rest of the system has to be de-fined in a way, so that it can keep up with this data rate, e.g. the NoC that has tobe able to bring in and take away data fast enough to keep the processor busy.Another issue to keep the processor busy is the connection to the local mem-
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Figure 1.2: Block diagram of the processing element architecture.

ory banks. Both the processor and the networking unit have two memory portsfor simultaneously reading and writing (sending and receiving) data and one forcontrol information. In addition to the two data memory ports, a processingcore features an instruction memory port. All three memory ports should beable to access the same memory locations (Fig. 1.2) making the physical sepa-ration of memory infeasible. Additionally, prior chip production has shown thatdual-port memory consumes almost twice the chip area than single-port mem-ory with the same data capacity. Since an MPSoC platform with local memoryfor the PEs consists mainly of on-chip memory, the storage density of the mem-ory is an important factor. Because of these considerations, a memory systemis used that utilizes a set of single port memory banks and connects them to aset of memory masters, allowing them to share access to a continuous memoryspace transparently.
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Figure 1.3: Memory system overview. Shown is the access path a master hasto a desired location in a memory constructed by linearlly alignedmemory banks.

1.3.3 Memory Management

The PE local memory management implements cross-bar like access function-ality for a set of memory masters to a set of memory providers like shown inFig. 1.2. This system was suggested in [83] to allow a most flexible distributionof memory access to serveral memory master (users), focusing on access colli-sion prevention. Depending on the application it promises access performancesimilar to the usage of dual-port memory bank but with inexpensive single-portmemory banks. A bank mapping table allows for each provider (e.g. memorybank) to appear in each master’s memory space. Apart from a memory bank,a provider can also be the configuration space of a specialized hardware unitthat is controlled with a memory-mapped configuration mechanism. For exam-ple, the networking unit’s configuration register file is connected to the memorysystem as a memory provider. With the help of the mapping table access to thenetworking unit can be granted to or revoked from any master.
In the case that multiple masters request a location from the same provider,an arbitration policy will select one of the requests to be forwarded to the provi-der, signaling all other requesting masters that their request has been delayed.
The arbitration policy has a request queue for each memory provider. Whena master request is routed to a specific provider, it will be appended to therequests queue. The request being in the pole position of the request queuewill be granted access. As long as a master keeps requesting the same provider,it will remain in the queue and remains to have access to the provider if being in
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Figure 1.4: Block diagram of networking unit showing the two main paralleldataflows of receiving and sending data.

the pole position. The moment it stops requesting, by changing the address toanother provider or clearing the enable bit, it is removed from the queue andhas to enqueue at the back. A timeout also removes masters from the queuepole position to prevent master starvation by a single master that never changeslocation.

1.3.4 Networking Unit

The networking unit provides an automated way of exchanging data with otherPEs. It is programmed using a memory-mapped special register file accessibleby the masters through a dedicated memory provider. It consists of three basicparts as shown in Fig. 1.4: Two streaming engines (1) moving data from the localmemory to the network, (2) moving data from the network to memory, and (3)a controller directing and controlling the streaming engines. Each part governsone memory master port, and the streaming engines each a network port.
The controller is in charge of programming both the send and the receiveengine. It can program the send engine to stream a data range from memoryto the network. Upon an incoming network message, the controller parses itsheader and programs the receive engine accordingly. The receive engine willthen stream the remainder of the message to the programmed memory range.Both engines are designed to process 128 bit (i.e. one flit) of data each cycle tomatch the speed of the NoC.
Since the two data engines provide only low-level functionality, the controlleris responsible for executing the different communication protocols. The dy-namic nature of the targeted signal processing application demands commu-nication modes with different performance focuses. In this networking unit
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three communication modes are included, each with a different type of com-munication in mind. The RDMA mode is used for one-time, high-volume, high-throughput, 1-to-1 bulk transfers. It does not need a sophisticated flow controlbut a simple connection establishment, i.e. the sender needs to know where towrite the data in the receivers memory. The RDMA protocol is closely relatedto the direct memory access (DMA) protocol found in off the shelf desktop PCs,but implemented for a distributed memory architecture. In distributed-memorysystems, it is often the only possibility of PEs to communicate with each other.Being separated by a NoC the PEs are otherwise unable to access each other’slocal memory. To reach a remote memory, the RDMA controller provides twomethods. The “put” is used to copy a local range to a remote PE’s memory,where the “fetch” method copies from a remote memory to the local one.
The first in first out (FIFO) mode enables constant, high throuhput streamsof data without adding a lot of software overhead to the application. Two PEscan communicate through a unidirectional channel reaching from the senderPE to the receiver PE. To use the channel, the sender only writes to a local databuffer. The data will be transported automatically to the receiver into a localbuffer, where the receiver can collect it.
For small messages, where response delay is crucial, like in signaling com-munication (e.g. requesting a service), a MP mode is provied. It provides thecapability to quickly and efficiently send small messages to a PE’s message boxwithout the need of a connection establishment. The message box is a randomaccess buffer for messages that can be received from multiple senders.

1.4 Representing LTE/5G baseband processing as Static
Data Flow

As already mentioned (in Section 1.1) the input of a digital signal processingstage of a mobile communication setup is a stream of more or less independentpackets. Each represents the data for one TTI and its processing can be viewedas an isolated problem. The complexity may vary dramatically depending of onseveral factors like number of antennas, the set of users, their applications andvarious channel properties. The range of differnt packet configurations alreadyis big for 4G and 5G and is considered to further increase for future mobilecommunication standards.
For example, the 4G uplink receiver baseband processing of a TTI-packet maybe simplified to a simple SDF-graph like shown in Fig. 1.5. Although the basic
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Figure 1.5: LTE uplink pipeline as generic flow chart, two abstract SDF represen-tations resulting from different parameter sets, and as distributedapplication using different graph instances.

graph may not change depending on the configuration, the complexity of theprocessing, may still vary. In the simplest case this may manifest in the numberand size of tokens transfered on the SDF channels and the firings each SDFactor has to conduct.
An efficient execution needs to employ different strategies to distribute com-putation to a set of PEs. Alongside different communication modes are neededto support those strategies. Each single firing of an actor may be placed ona different PE because of computation needs. In this case bulk transfers areneeded to move the needed data to many different PEs. In contrast simple buthigh throughput actors may stay on a sinlge PE and be connected with pipelinesto assure unobstructed data processing. To quickly react to the ever changingcomputation needs an MP mode is needed. It allows the efficient implementa-tion of a dynamically generated execution plan on the available PEs.
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1.5 Compuation Stack

The computation stack is a set of layers consisting of software and hardwareconstructs forming a system that is able to do a computation. The efficiency ofa system depends on all layers of the computation stack:
• The “algorithm” is a description of a solution to a problem in a computer-executable manner.
• The “language” layer specifies a set of commands and operations to definean executable program.
• A “runtime environment (RTE)” provides a framework with functionality tosupport the execution of a program with recurring tasks like inter-threadcommunication. Also, resource allocation can be a task of the RTE espe-cially in distributed computation.
• The “OS” provides security functionality like the isolation of programs tothe platform. Isolation of resources implies the allocation of those. Incontrast to the RTE, the OS focuses on isolation instead of performanceoptimization.
• The “drivers” can be included into the OS layer. Since the OS layer is con-sidered optional here, but the drivers are not, they are listed in a separatelayer. Drivers provide an abstraction of some functionality from the usedhardware. For example, a driver may provide the functionality to send amessage to another PE without the application knowing what kind of net-working unit is present.
• The “hardware” is the lowest layer, providing the actual manipulation andstorage of data. The definition can often be partitioned into units for var-ious tasks like data storing, mathematical operation, moving data, con-trolling program flow, application-specific accelerated data manipulation,etc..

Generally speaking, each layer provides functionality to the layers above byabstracting and refining functionality provided by the layers below. The costsat which functionality is provided can be measured as the use of two base re-sources. The two resources that are of interest are the occupation of computingtime and memory. While the management of memory is an important topic for
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the efficiency of a distributed memory system, this work’s primary focus will bethe computation time. Although the occupation of memory in local memories isomitted, the transfer of data through the network is considered because it canconsume a significant amount of time.
Each layer defines a set of operations an upper layer may issue. The issue ofan operation is defined by an implementation. An implementation is defined asa set issues of operations of lower layers to produce the desired result. The totalresource consumption then is the sum of all issued operations. There are twopossibilities to optimize an operation. One is to optimize the implementationto use fewer or cheaper operations of the lower layer. The other possibilityis to decent one layer and optimize operations frequently used in the currentimplementation.
Another way how each layer can affect the execution time is through staticresource consumption. The static consumption of resources is independent ofthe executed program. It may, for example, be a fixed portion in each time slice.For example, in a preemptive scheduling environment, the OS will interrupt therunning program and do context switches with a fixed frequency, using a por-tion of computational resources. Likewise, a communication library decoupledfrom the CPU delays the progress of the distributed application without directlyinterfering with the CPUs.
Optimizations of operations can be done on any layer, and each will affect theapplication’s execution time. The effective speedup for the application causedby the optimization can be described with Amdahl’s law. With p being the por-tion of resources consumed by the operation in relation to the total resource us-age, and s being the speedup of the optimized operation2, the effective speedupis described as [3]:

S = 1
(1 – p) + p

s

An operation may be a candidate for optimization if the product of its re-source consumption and the number of issues is high. It may be more beneficialto optimize a low-level operation used in many higher-level operations. There-fore, it accumulates a more significant resource consumption than a complexhigh-level algorithm issued only once at program startup. In the following, all
2Operations are considered sequential. The speedup of an operation is usually achieved by an moreefficient implementation. Speedup of the application by parallelization is not directly connected tooperation optimizations. An efficient computation stack, however, shrinks parallelization overhead,thus helps application speedup.
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Figure 1.6: Layers of a distributed computing platform.

layers that take part in the execution of a program will be briefly described, andpossible hotspots are being analyzed.

1.5.1 The Algorithm and Application Layer

The way an algorithm is defined often also determines the computational effortposed to the platform. Usually, little can be done to improve algorithms’ effi-ciency without going into domain-specific details of the application. Switchingthe algorithm or parts of it with simplified or heuristic approaches can reducecomplexity in exchange for accuracy. However, it is the task of the applicationdeveloper to decide for an algorithm that consumes as little computational ef-fort as possible while producing results that are sufficiently precise for the in-tended application.
However, an algorithm can be selected or designed to be adapted to the givenplatform constraints with regards to the other layers. The targeted environmenthere is designed for distributed applications. It means that there are multipleindependent and isolated PEs connected with a distinct communication fabric.The PEs are expected to be fairly small, with a simple CPU and a small con-nected memory, so that already a medium-sized application cannot be run ona single PE, but will have to spread over multiple. For example, an applicationdescribes as a DSP pipeline does fit the architecture well and may lead to highperformance. Each stage can be hosted on another PE, and communicationinfrastructure provides cheap and performant data transfer between stages.
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1.5.2 The Language Layer

Choosing a programming language is important as it can introduce a signifi-cant amount of overhead. Several attributes may give hints about overhead,resource consumption, and performance. An “interpreted” language (i.e. script)almost always introduces a lot of overhead through the indirection of opera-tion by a virtual machine. Examples are “python”, “java”, “MATLAB”. The “garbagecollector” many languages utilize is activated spontaneously and will consumea significant amount of computing resources. It is not exclusive to interpretedlanguages, for example, used in “C++” or “go”. Other attributes that also mayimpact performance are dynamically evaluated types for implementing “poly-morphism” and the intensive use of various dynamic objects like “associativearrays” or “dynamic lists”.
Most languages, however, are specifically designed for a certain type of ap-plication and environment. Scripting languages like python or javascript mostlyfocus on simplicity and convenience for writing software. Other languages like“C” and “Rust” are designed explicitly for resource-limited systems and perfor-mance craving applications. The for a certain is therefore dependent on theproject and usually easily decidable.

1.5.3 The Runtime Environment Layer

The RTE provides an abstraction for an application from the available process-ing and communication resources. The topology of the distributed application isdefined. It is described as a set of processing and data objects and their relationto each other (e.g. read/write access). The RTE’s purpose is to map these ob-jects to the physically available resources, i.e. processors and memories, whileincorporating communication cost of object transfers between resources.
The performance issue that can arise in this layer is that every structure re-quires a certain amount of (computation) resources to be managed. If the ap-plication is partitioned into too small parts, or the management operations aretoo costly, the relative overhead will be significant, making execution inefficent.
On the flip side, the RTE can dynamically utilize available resources and reactto changes in the available resources or the application. It allows the RTE tooptimize computation efficiency on any given platform size or topology.
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1.5.4 The Operating System Layer

The OS layer is, for a platform like the one considered in this work, non-essential.The task is to insert a security layer that isolates the applications and sometimesalso the system services from each other. There are various possible ways ofhow applications could interfere with each other and as many methods to pre-vent each one. The most trivial inter-application interference is access to an-other application’s memory space. Writing to foreign memory is consideredmalicious behavior, but even reading could reveal confidential data like crypto-graphic keys. Apart from security reasons, isolation also has a safety benefit, asthe damage a malfunctioning software can cause can be contained easily. Onoff-the-shelf desktop systems running a variety of very different software simul-taneously, the benefit from increased safety and security prevails. In contrast,on an embedded MPSoC, that probably only runs a single piece of software, theoverhead introduced by the OS quickly becomes significant. The OS layer maybe skipped entirely in this case to keep the performance.

1.5.5 The Driver and Library Layer

The driver and library layer provides an abstraction from the hardware imple-mentation of a set of needed functionality. Depending on the available hard-ware, it may be necessary to emulate some functionality to fulfill all require-ments of an application programming interface (API) exposed to upper layers.For example, a library may implement and MP protocol stack based on an RDMAhardware module if no MP hardware module is present. It allows programsfrom the higher layers —may it be the OS the RTE or the application directly—be developed against a consistent API, e.g. a MP API, without caring about theavailable hardware.
Drivers and libraries often contribute a significant amount to the resourceconsumption of an application. Especially frequently used operations like com-munication primitives can represent a lot of overhead. The optimization of theseoperations is often tricky because they mostly consist of the translation of func-tion calls to programming hardware modules through memory-mapped configfiles. But the large number of issues to these small operations make alreadysmall savings in computation worthwhile. However, in some cases it may onlybe possible to slim the configuration process by changing the hardware moduleitself, or at least it is the more promising way to go.
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1.5.6 The Hardware Layer

The hardware layer is unique as it does not depend on a lower layer’s opera-tions but only provides functionality upwards. The most apparent operationsare an implementation of a general-purpose ISA and the possibility to storedata. Optimization in other layers consists of avoiding issues to lower layersor using cheaper ones, where optimization in the hardware layer works differ-ently. When optimizing at hardware layer, new operations are defined and im-plemented directly in hardware. The additional operation can be used by otherlayers instead of implementing the same functionality with a sequence of basicoperations. For example, a floating-point unit provides operations that can cal-culate floating-point arithmetic in very few cycles where a software implementa-tion based on integer operation may take around a hundred cycles to complete[68]. Similarly, larger algorithms may be implemented in hardware to shortedexecution time. Not only local calculations but also communication operationsmay benefit from specialized hardware implementations. The availability of aFIFO channel unit or and hardware MP protocol stack to omit software librariescan help save resource consumption.

1.6 Performance Hotspots Addressed

The previous section stated that to optimize an application decently, the wholesystem, meaning each layer, must be addressed and optimized towards thegiven requirements given by the application. Some hotspots will be addressedin the following chapters, and optimization strategies used to improve systemperformance. There will be no space to cover hotspots in all layers, yet four willbe visited that were noticed to be significant in earlier times.
(1) Describing a distributed application is a relatively new problem in com-puter science. For the most time, a program has been considered sequentialwith one thread following a track of commands through a program, occasionallyand conditionally jumping to create all kinds of decision making. With the adventof shared-memory multiprocessors, this idea has been enhanced by a singleconsideration: The existence of multiple threads that live in the same memoryspace. Harnessing the potential of a multi-threaded, memory-shared system isa complex task that poses the danger of unwanted side effects. There are manyframeworks, libraries, and OS support to increase safety, security, and ease-of-use of those systems. The functionality that these RTE and OS level solutions
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provide always follows two principles: (a) The threads belonging to an appli-cation are isolated from each other in memory except for a precisely definedlocation used to implement the communication. (b) The communication func-tionality is exposed to the application either as a FIFO-like channel or a messagesending service. Access to the whole memory is restricted to a data pipeline al-lowing serial access to both communication partners or a messaging systemworking on evenly sized data blocks. In addition to that, most desktop-focusedmultiprocessing libraries do not consider to apply the same canalization to thecomputation, chunking the application into inter-dependent processing blocks.With a resource management unit providing isolation and canalization for bothdata and processing time, optimization can already be done on application levelby just choosing the right data and computation types for subprograms.(2) Although in desktop targeting OSs the structure of chunking the process-ing time into tasks is usually not provided, some projects offer a task runningRTE with the tasks usually drawing from a SDF graph. A problem that ariseswhen implementing such a system is that the management overhead becomessignificant relative to the actual computation depending on the task size. Thebasic relation here is that each task introduces at least a fixed amount of over-head work independent of the task’s size. That means having smaller tasksdecreases the task to overhead ratio until the management becomes the bot-tleneck of the system, not allowing the exhaustion of the systems processingpower. The main reason is that most systems centralize the management intoa single-threaded unit, unable to scale. With a more or less fixed overhead forone task, the system’s task throughput is determined by the management unit’sspeed and is independent of the task size, as long as tasks stay small enough.For bigger tasks, the bottleneck becomes the system’s processing power leavingthe management unit on idle for some time. Making the management systema distributed application itself would help to scale with the amount of overheadwork that needs to be done. The management system could adapt to the tasksize to occupy exactly as much processing resources as needed to fill the re-maining resources with tasks.(3) The first two hotspots are dealing with software; the third and fourthhotspots address problems in the hardware layer. The main focus here lies incommunication technics. The classical computation system does not need spe-cialized communication hardware because any communication protocol can bebuilt based on shared memory. When turning away from shared towards dis-tributed memory, dedicated communication functionality becomes essential.The most common technic even found in desktop systems to relieve the CPU
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from long data copy operation is the DMA controller. Although not needed inshared memory systems, it is used to parallelize data transfers and main com-putation in shared memory systems. In distributed-memory systems, wherememories are isolated from each other, the DMA is often the only possibility toexchange data between nodes. The shared memory DMA only needs a singleoperation, which is copy data from one location to another. In contrast, thedistributed memory DMA distinguishes between local and remote memoriesand defines two operations, one for sending data to and one for pulling datafrom remote memory, forming the widely used RDMA function set. Althoughthe RDMA allows implementing all communication formats, some may sufferfrom performance issues. In this work, two chapters are devoted to improvingcommunication in distributed memory systems by implementing specific com-munication protocols in hardware.
One of the two protocols implements a FIFO channel, used for example, forpipelined signal processing. The flow of data from one MPSoC node doing oneprocessing stage to the next is entirely offloaded to a dedicated hardware unitallowing the CPU to concentrate on the number crunching. This form of com-munication expects a constant and high amount of data rate.
(4) The second communication protocol provides MP functionality and is vitalfor distributed application design. It suffers from performance loss when imple-mented on top of a RDMA stack. When used for synchronization of nodes andrequests to service nodes, the main issue a RDMA based implementation has isthe message delay. A hardware (HW) implementation can significantly improvethe delay by removing unnecessary protocol layer messages. Another problemaddressed is extensive memory consumption and the overhead of managingconnections states.

1.7 State of the Art

Building a complete dynamic SDF execution system covering every layer fromhardware up to the application is a massive task. It has hardly ever been done(best to our knowledge). Also, this thesis struggles to relate everything to every-thing else. But each of the regarded hotspots does have their field of relatedwork that they can be placed into. At the beginning of each chapter, a moredetailed “state-of-the-art” section will cover work related to the topic at hand.Anyway, a quick overview of the most prominent works will be given here, alsocovering fields not touched in this work but worth mentioning.
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There have been several attempts to build an MPSoC with a focus like the onedescribed in Section 1.2 like [33, 61, 40, 65, 14, 24, 54, 6]. Each project has itsown set of hardware units featured to support a specific type of use case. Thecommunications features on a MPSoC are often regarded with great detail andversatility reaching from NoCs [9, 80, 5, 6] over DMA controller [63] to FIFO im-plementations [77, 39]. One step higher on the stack, on the RTE layer, severalworks are dealing with SDF-like graph processing on multi-core systems [15, 58,53, 12, 49, 67, 56, 18] and also works that review the hardware and RTE layertogether [75, 72]. A technique that could not be covered in this work but worthmentioning and interesting for future work is the clustering of tasks to saveoverhead effort [22, 29]. A lot of works combine two layers they regard jointlyskipping several layers on the computation stack, like Long Term Evolution (LTE)implementation on SDR a platform [8], on a general multicore architecture [66],and on field programmable gate array (FPGA)-based solutions [45, 85, 1]. Butmost state-of-the-art work assumes standard components in all layers exceptthe one that is improved. There are a multitude of different dataflow models[51, 42, 4, 10, 31] mostly adding different attributes to SDF, new languages toexpress stream processing [19, 21, 76, 81] and even efforts on compiler tech-niques to optimize stream processing on multi-processor systems [26].

1.8 Overview of the Work

In this work the key challenges will be highlighted that are most likely to be a dealbreaker when designing an efficient dynamic SDF execution system. As alreadymentioned in Section 1.1 the efficiency of an embedded platform depends onevery layer of the computational stack (Section 1.5). Although each layer is im-portant and can have a game-breaking impact on performance, only a few layerswill be regarded closely in this work. Some layers can be ignored because theyare not mandatory or unlikely to impact performance when used correctly. Us-ing “C” as programming language is unlikely to cause a performance issue on itsown, because of its lightweight nature, but it is cumbersome and error-proneto write and thus may be replaced with some modern language to increase de-velopment efficiency. Similarly, an OS can be inserted for portability or securityreasons. Both cases require extensive investigations to verify the impact on theresource allocation efficiency of the whole system. For that reason, althoughpresenting interesting possibilities to explore, both layers are left out of thiswork.
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What will be discussed in this work are four topics that are expected to impactsystem performance significantly. On all four topics, a solution matching theproblem at hand is, to our best knowledge, not present. First, the topic of dis-tributed application representation is visited in Chapter 2. A hybrid descriptionwill be developed that aims to combine the advantages of task graphs and pro-cess networks. Additionally, it introduces the issue of balancing the overheadand the payload calculation of a distributed application. This overhead-payload-ratio is revised in the second topic concerning the platform’s and application’smanagement instance distribution in Chapter 3. Both topics implicitly assumeefficient data transfers within the system. As already mentioned (in Section 1.4)these are bulk transfers, pipelines and efficient message passing.Where bulk transfers can efficiently be done with widely available RDMA [43,41, 44, 2] engines, the other two need a closer review. In Chapter 4 the efficientrealization of inter-PE data pipelines are investigated. The usual high through-put demands of pipeline connections require close analysis and optimization oflocal memory access. In Chapter 5 the missing transfer mode (“message pass-ing”) is examined. The many-to-one relation of client-server relations demandsresource efficiency on the server-side. Additionally, the message delay has anon-neglectable impact on the possible utilization of the server process.
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