Beitrage aus der Informationstechnik

Mobile Nachrichtentbertragung

Nr. 108

Simon Maria Friedrich

On Interactions of Deep Neural Network Acceleration
and Memory Subsystem

p's

VOGT

Dresden 2025

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet Gber http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the
Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2025

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
,On Interactions of Deep Neural Network Acceleration and Memory
Subsystem® von Simon Maria Friedrich tberein.

© Jorg Vogt Verlag 2025
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor
ISBN 978-3-95947-085-8

Jorg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49-(0)351-31403921
Telefax: +49-(0)351-31403918
e-mail: info@vogtverlag.de
Internet : www.vogtverlag.de

Technische Universitit Dresden

On Interactions of Deep Neural Network

Acceleration and Memory Subsystem

Dipl.-Ing.

Simon Maria Friedrich

der Fakultit Elektrotechnik und Informationstechnik der

Technischen Universitat Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Christian G. Mayr
Gutachter: Prof. Dr.-Ing. Dr. h.c. Gerhard P. Fettweis
Prof. Dr. Oliver Bringmann

Mitglied der Kommission: Prof. Dr.-Ing. Rafael F. Schaefer

Tag der Einreichung: 31.03.2025

Tag der Verteidigung: 23.09.2025

Simon Maria Friedrich
On Interactions of Deep Neural Network Acceleration and Memory Subsystem
Dissertation, 23.09.2025

Technische Universitit Dresden

Lehrstuhl fiir Mobile Nachrichtensysteme
Institut fiir Nachrichtentechnik

Fakultat Elektrotechnik und Informationstechnik
01062 Dresden, Germany

Abstract

Artificial intelligence has rapidly advanced over the past decade. Following break-
throughs in image classification, neural networks have been applied to a wide range
of tasks, expanding their impact across various domains. The increasing adoption of
Deep Neural Networks (DNNs) is driven by their improved accuracy and growing
capabilities. However, this surge in model development has only been possible
through significant advancements in hardware systems. Dedicated accelerators are
now widely used for training and executing neural networks, extending the design
space beyond traditional Central Processing Unit (CPU) and Graphics Processing
Unit (GPU) clusters. These accelerators are gaining popularity due to their spe-
cialized architectures, which are optimized for neural network workloads. This
evolution enables the training and execution of larger models on increasingly ex-
tensive datasets. Despite these advancements, dedicated DNN accelerators, like all
compute cores, remain constrained by the memory wall issue. This challenge arises
as computing performance continues to outpace the growth of memory bandwidth
and interconnect speeds, making the memory subsystem a critical performance
bottleneck. Several strategies exist to mitigate the memory wall. This thesis extends
these approaches by analyzing the interactions between DNN acceleration and the
memory subsystem. Firstly, it introduces novel contributions that leverage DNNs
themselves to enhance the memory interconnect efficiency. Additionally, it presents
a dedicated hardware architecture designed to enable memory-efficient Dilated
Convolution (DCONV) processing.

In embedded systems, high-performance cores typically rely on fast and predictable
on-chip memory. To improve conflict handling and reduce execution time, offline
arbitration can be combined with memory access prediction, a technique known as
Access Interval Prediction (AIP). This thesis introduces neural network-based AIP
units to enhance prediction accuracy. By further leveraging model compression tech-
niques, the system’s compute cost can be reduced while maintaining performance
improvements in configurations with multiple masters and shared memory.

However, memory sharing is generally not feasible for compute cores specifically
designed for DNN execution. Since these systems also face limited effective memory
bandwidth, we introduce a novel memory mapping and address generation scheme.

Vi

This approach eliminates redundant operations for DCONV, resulting in a net per-
formance increase even in memory-bound systems with constrained bandwidth.
Additionally, by implementing data-reuse register stages within the compute core,
energy efficiency can be further improved. Our results demonstrate that the negative
impact of the memory wall can be mitigated by aligning the compute and memory
systems for specific operations such as DCONV. This optimization enhances the
deployment of DCONV operations in embedded systems, making applications such
as semantic segmentation feasible on mobile devices.

Kurzfassung

Die Entwicklung der kiinstlichen Intelligenz hat sich im letzten Jahrzehnt rasant
beschleunigt. Nach herausragenden Fortschritten in der Klassifizierung von Bil-
dern wurden neuronale Netzwerke auf eine Vielzahl von Aufgaben angewendet.
Folglich kommen sie in unterschiedlichen Bereichen nun zum Einsatz. Aufgrund
von Verbesserungen in der Genauigkeit und wachsenden Fiahigkeiten werden vor
allem zunehmend tiefe neuronale Netze (engl. Deep Neural Networks, DNNs) ein-
gesetzt. Diese Entwicklung an Modellen wire jedoch ohne bedeutende Fortschritte
in den zugehorigen Hardwaresystemen nicht moglich gewesen. Neben traditionel-
len zentralen Recheneinheiten und Grafikprozessoren werden heute weitgehend
dedizierte Beschleuniger fiir das Training und die Ausfithrung von neuronalen Netz-
werken eingesetzt. Vor allem aufgrund ihrer spezialisierten Architekturen, die fiir
die Verarbeitung von neuronalen Netzwerken optimiert sind, gewinnen diese Be-
schleuniger an Popularitét. Diese Entwicklung ermdglicht es, grofBere Modelle auf
zunehmend umfangreicheren Datensédtzen zu trainieren and auszufithren. Trotz
dieser Fortschritte wird die Leistungsfahigkeit dedizierter DNN-Beschleuniger, wie
alle anderen Rechensysteme, durch das Problem der sogenannten Speicherwand
(engl. memory wall) eingeschrankt. Die Herausforderung hierbei ist, dass die Re-
chenleistung schneller als die Bandbreite des Speichers und der Geschwindigkeit der
Speicherinterkonnektivitat wéchst, wodurch das Speichersystem zu einem entschei-
denden Engpass des Gesamtsystems wird. Es gibt verschiedene Strategien, um die
memory wall zu iiberwinden. Durch die Analyse der Interaktionen zwischen DNN-
Beschleunigung und dem Speichersystem werden diese Strategien innerhalb dieser
Arbeit erweitert. Zunéchst wird eine Methode ausgearbeitet, die DNNs selbst nutzen,
um die Effizienz der Speicherinterkonnektivitdt zu verbessern. Zusétzlich wird eine
dedizierte Hardwarearchitektur vorgestellt, die ein speichereffizientes Ausfiithren
von gedehnten Faltungen (engl. Dilated Convolution, DCONV) ermdglicht.

In eingebetteten Systemen setzen Hochleistungs-Rechenkerne in der Regel auf
schnelle und vorhersehbare Speichermodule, welche auf dem Chip integriert sind.
Um Konflikte besser zu 16sen und die Ausfithrungszeit zu reduzieren, kann eine
offline Arbitrierung mit Speicherzugriffsvorhersage kombiniert werden, eine Technik,
die als Zugriffsintervallvorhersage (engl. Access Interval Prediction, AIP) bekannt ist.
Zur Verbesserung der Vorhersagegenauigkeit stellt diese Arbeit AIP-Einheiten auf

vii

viii

Basis neuronaler Netzwerke vor. Durch die Nutzung von Techniken zur Komprimie-
rung von DNNs konnen die Rechenkosten des Systems gesenkt werden, wiahrend
weiterhin die Verbesserung der Leistungsfihigkeit in Systemenkonfigurationen mit
mehreren Mastern und gemeinsamem Speicher aufrechterhalten wird.

Das Teilen eines gemeinsamen Speichers ist jedoch in der Regel nicht praktikabel
fiir Rechenkerne, die speziell fiir die Ausfithrung von DNNs entwickelt wurden. Da
diese Systeme ebenfalls mit begrenzter effektiver Speicherbandbreite konfrontiert
sind, wird ein neuartiges Speicherabbildungs- und Adressgenerierungsschema vorge-
stellt. Dieser Ansatz eliminiert redundante Operationen wéhrend der Berechung von
DCONVs und fiihrt zu einer effektiven Steigerung der Leistungsfahigkeit, selbst in
Systemen, bei denen die Speicherbandbreite der limitierende Faktor ist. Zur weiteren
Steigerung der Energieeffizienz konnen mit zusétzlichen Registerstufen Daten zwi-
schen den Rechenmodulen wiederverwendet werden. Die Ergebnisse dieser Arbeit
zeigen, dass die negativen Auswirkungen der memory wall durch die gegenseiti-
ge Abstimmung des Rechen- und Speichersystems fiir bestimmte Operationen wie
DCONVs abgeschwicht werden konnen. Diese Optimierung verbessert den Einsatz
von DCONV-Operationen in eingebetteten Systemen und erméglicht Anwendungen
wie die semantische Segmentierung auf mobilen Geréten.

Acknowledgement

An dieser Stelle mochte ich all den Leuten danken, die mir innerhalb der letzten vier
Jahre meiner Promotion zur Seite standen. Ohne deren Unterstiitzung wire meine
Doktorarbeit in dieser Form nicht moglich gewesen.

Besonders hervorheben mochte ich meinen Doktorvater Gerhard Fettweis und mei-
nen Gruppenleiter Emil Matus. Beide gaben mir {iber die Jahre hinweg nicht nur
inhaltliche Anregungen und Ideen, sondern sorgten auch dafiir, dass ich die Einrei-
chung der Doktorarbeit nicht aus den Augen verloren habe.

Wenn ich an die Zeit am Lehrstuhl zuriickdenke, muss ich natiirlich auch Sylvia,
Claudia, Nike, Riidiger und Raffael fiir ihre Unterstiitzung bei all den administrativen
Angelegenheiten und das Bahnen durch die teilweise biirokratischen Strukturen der
Universitdt danken. So kam ich doch beinahe jeden Tag aufs neue wieder motiviert
ins Biiro, was auf jeden Fall auch dadurch katalysiert wurde, dass mir einige meiner
Kollegen iiber all die Zeit freundschaftlich ans Herz gewachsen sind. Besonders mein
Kollege Robert hatte wihrend jeder Phase meiner Promotion immer ein offenes Ohr
fiir mich und stand mir stets zur Seite.

Auch mochte ich all meinen Freunden danken, die mich in den Bereichen fernab der
Promotion begleitet und mir geholfen haben den benétigten Ausgleich in meinem
Leben zu finden. Besonders gilt dies fiir Franz, Michael und Daniel.

Der grof3te Dank gilt aber meiner Familie. Sie war es, die nicht nur {iber die Jahre
hinweg bei meiner Promotion mitgefiebert und sich iiber jedes akzeptiertes Paper
von Herzen gefreut hat. Sondern sie stand auch in den anspruchvollen Abschnitten
meiner Doktorarbeit immer an meiner Seite und hat mich hierbei bedingungslos
unterstiitzt.

Der allergro3te Respekt gebiihrt hierbei meiner Partnerin Irena. Dank ihrer Wert-
schatzung und aufopferungsvollen Unterstiitzung wusste ich auch in den stressigsten
Phasen, dass ich mich immer auf sie verlassen und alles schaffen kann. Seitdem
wir uns kennengelernt haben kam eine solch unglaubliche und positive Dynamik in
mein Leben, die mich nicht nur beim Schreiben meiner Doktorarbeit befliigelt hat
und welche ich nie mehr missen mochte.

Dresden, Mirz 2025 Simon Maria Friedrich

Contents

1 Introduction
1.1 Contributions to State-of-the-Art and Related Work
1.2 Outline e

2 Background
2.1 Memory Subsystem and Interactions
2.2 SystemModel
2.3 Fundamentals and Architectures of Deep Neural Networks
2.3.1 Multi-Layer Perceptronot i i
2.3.2 Convolutional Neural Network
2.3.3 Recurrent Neural Network
2.34 Transformer
2.3.5 Data Types and Mixed-Precision
2.4 Deep Neural Network-Aided Image Processing
2.4.1 State-of-the-Art Deep Neural Networks
2.4.2 Requirements for Image Processing
2.5 Neural Network-Aided Memory Architectures
2.5.1 Existing Applications and Implementations
2.5.2 Requirements for Hardware Auxiliary Cores

3 A Neural Network-Aided Memory Access Interval Predictor
3.1 Problem Definition and Requirements.
3.2 System Model and Definitions
3.3 State-of-the Art Access Interval Prediction
3.4 Feasibility of Neural Network-based Predictors
3.4.1 DataGeneration
3.4.2 Data Analysis of Memory Access Traces
3.4.3 Definition of Training Constraints
3.4.4 DataPreparation
3.5 Design Space Exploration
3.5.1 Selected Deep Neural Network Models and Parameters

11
11
12
14
14
16
16
17
19
20
20
21
22
22
24

25
26
27
29
29
30
30
33
35
38
38

Xi

Xii

3.5.2 Performance Evaluation 39

3.5.3 Predictor Comparison 43
3.6 Summary 45
Compute Resource Reduction for Access Interval Predictors 47
4.1 Problem Definition and Contribution 47
4.2 Definitions and System Model 48
4.2.1 PredictorLatencyo i 49
4.2.2 System Model with Multiple Masters 50
4.3 Advanced Neural Network-based Predictors 51
4.3.1 Next-but-One Predictor 53
4.3.2 Multi-Step Predictor 53
4.3.3 Cascaded Predictor 53
4.3.4 Complexity of Advanced Predictors 55
4.4 Compute Resource Reduction per Predictor 55
4.4.1 Integer Quantization 56
4.4.2 ModelPruning 56
4.5 Performance and COStot 57
4.5.1 SingleMaster e e 58
4.5.2 MultipleMaster 60
4.5.3 Area Analysis of Shared Memory System 61
4.6 SUMMATY o v vttt e 62
A Regular and Universal Instruction Set for DNN Accelerators 65
5.1 Gains of Universal CNN Support. 67
5.2 Requirements and Constraints 68
5.3 Generalization of Convolutions 69
5.4 State-of-the-Art CNN Acceleration 72
5.5 System Model and Convolution Engine 73
5.6 Per-Layer Mixed-Precision Bit-Serial Memory Mapping 76
5.7 Regular Address Generation Scheme 78
5.7.1 Accelerators with Single Partition 78
5.7.2 Accelerators with Multiple Partitions 81
5.7.3 Address Generation Unit and Instruction Set 81
5.8 Hardware-Independent Dilated Convolution Support 82
5.9 SystemAnalysis L. 84
5.9.1 Implementationand Cost 85
5.9.2 EnergyEfficiency 89
5.9.3 Instruction Footprint Reduction 89

5.9.4 Calculation Time Decrease
510 SUMmMary e e e e e e e

6 Intra-Layer On-Chip Memory Access Reduction
6.1 State-of-the-Art Data Reusability for Dilated Convolutions
6.2 Feature Decomposition
6.3 Design Principles and System Model
6.4 Memory Access Reduction for Dilated Convolutions
6.5 EnergyAnalysis
6.6 SUMMATIY v vttt e e

7 Summary and Conclusion

A Inter-Layer On-Chip Memory Size Reduction
A.1 Extended Line Buffer Approach
A2 SystemAnalysis

B Mathematical Definition of LSTM

C Additional Information for DNN-based AIP
C.1 Results of the Design Space Exploration
C.2 Computation Methods for CNNModels
C.3 Cycle Count Analysis of a Multi-Master System
C.4 Execution Cycle Analysis for 4 Masters

Bibliography

Publications of the Author

List of Figures

List of Tables

List of Operators and Constants
List of Symbols

List of Acronyms

107

111
111
114

115

117
117
120
120
121

123

137

139

143

145

147

151

xiii

Introduction

The development of Artificial Intelligence (AI) has significantly accelerated over the
past decade. Since the notable achievements of Convolutional Neural Networks
(CNNs) in image classification in 2012 [KSH12] and transformer networks in 2017
[Vas+17], Deep Neural Networks (DNNs) have seen widespread adoption across
various industrial sectors. Their applications span various fields, including man-
ufacturing, finance, and medical science [Abi+18; Sar21]. A growing number of
scientific publications highlights the surge in Al development. In the medical field
alone, Al-related publications doubled between 2015 and 2022 [Kar+23]. The
tasks are similar across various industries and can be categorized into prediction,
pattern recognition, and classification. Image processing, which incorporates classi-
fication and object detection, is essential in many sectors, such as healthcare and
automotive. In autonomous driving, the role of DNNs has expanded to support more
complex tasks, such as semantic segmentation [Yur+20]. Other control applications
in automation and robotics also benefit from DNNSs, as demonstrated in fields like
agriculture [dOeS23].

The increasing use of DNNs is driven by enhanced neural network accuracy and
their growing capabilities. For example, image-based detection of skin lesion cancer
by DNNs is accurate by 98 % [Sal+23]. These enhancements are mainly based on
new types of neural network models, larger model sizes, and increasing data sets for
the model training [Sch+20]. However, this rise in model development was only
possible with significantly improved hardware systems. Dedicated accelerators are
utilized to train and execute these networks, broadening the design space beyond
traditional Central Processing Unit (CPU) and Graphics Processing Unit (GPU)
clusters. The accelerators are gaining popularity because their designs are tailored
explicitly for neural network tasks [Reu+22]. This evolution allows for the training
of larger models on more extensive datasets.

Apart from the model training, which has to be conducted only once, mainly on a
cluster computer, the repeated execution of the pre-trained models, called inference,
remains challenging. Due to the wide range of heterogeneous applications, a
suitable hardware system has to be selected for the model execution based on the
requirements of the DNN task. Fig. 1.1 shows a typical design flow to accelerate

2

DNN Acceleration

e ———
DNN Application ‘ Compute System ‘ ‘ Memory ‘
— Types Architecture |— Hierarchy

Rttt Rl |— Single-Core |— L1: Registers
— Cognitive Processing |
************* ! — Multi-Core — L2: Cache
— Image Processing
'— Many-Core — L3: Main Memory
Classification
Object Detection Processing Cores — 14: Disk Storage
Semantic Segmentation [— CPU — Technology
I— Language/Speech Recognition — GPU — SRAM
— ASIP

— Automation and Control — DRAM

,,,,,,,,,,,,, : — ASIC '— Flash
L— System Optimization , A

,,,,,,,,,,,,, | X

— Branch Prediction ' Location

— Memory Prefetching . t On-Chip

' .
'— Access Interval Prediction : Off-Chip
'
|— Target : '— Characteristics
' .
— Mobile Device ' Bandwidth
' .
— Server , Size
L pc 1 Access Time
' s
' Cost 1
L— Requirements : T:
' t Energy
| '

Latency ; Area
[— Throughput ') Accesibility |
|— Flexibility : E Private

1
— Scalability ! Shared
— Energy Efficiency : x.

' '
L— Memory Size ' ,

Selection based on application requirements

Fig. 1.1.: Overview of the design flow for DNN hardware execution after training.

a DNN application on a hardware system. The starting point for accelerating
such an application is a pre-trained DNN. In this thesis, we distinguish between
cognitive applications accelerated by a computing system and applications focused
on system optimization. The previously mentioned examples fall into the cognitive
category, whereas the second category leverages DNNs to optimize the computing
system itself. One example is neural network-aided memory prefetching [Shi+21].
Additionally, the requirements and target of each application can differ. Consequently,
these parameters determine the choice of the hardware system, which consists of
computing and memory components.

Chapter 1 Introduction

Regarding the compute system, the processing core is selected based on several trade-
offs. Higher performance generally reduces flexibility but lowers power consumption
[Blu+02]. For instance, applications that require very low latency and high energy
efficlency may benefit from a dedicated Application-Specific Integrated Circuit
(ASIC). If necessary, multiple processing cores can be integrated into a multi-core
system. The selected memory system can be divided into different levels' mostly
fabricated in different technologies [HP17]. Commonly, the memory hierarchy of a
custom ASIC is further categorized by its location, on- or off-chip. Multiple memories
from different levels with various characteristics are typically combined within the
memory system to match the application’s requirements.

Within the hardware, both systems, compute and memory, interact. To handle
the interactions, the so-called memory subsystem serves as the interface between
processing cores and physical memory. However, these interactions require improve-
ments due to a phenomenon called memory wall. First introduced in [WM95], the
increase in computing performance has been outpacing the bandwidth growth of
memory and its interconnect. This trend is evident in any compute system and
especially dominant in hardware designed to accelerate DNNs [Gho+24]. Fig. 1.2
illustrates performance scaling of server-grade Al hardware over more than 20 years.
The compute performance triples every two years, while off-chip memory and inter-
connect bandwidth increase by factors of only 1.6 and 1.4, respectively — only half
of the increase in the compute performance. Consequently, the available memory
bandwidth is limited, and the disparity between processing speeds and memory

iHigher levels are located closer to the compute core but are labeled with a lower number.

Scaling of Peak FLOPS, and Bandwidth
H100
A100 >
10000001 HW FLOPS: 60000x / 20 yrs (3.0x/2yrs) o . s
DRAM BW: 100x / 20 yrs (1.6x/2yrs) o ® TPUVA
Interconnect BW: 30x / 20 yrs (1.4x/2yrs) KNL @,
K40 ‘ 3
o oe
10000-| o X508 g
2
K o o o ° ®
@
3 . o o
g oo o HBM2E
2 100 Itanium 2 ® HBM HE.MZ 0==0-0
£ . P) ° o °
s ° o ©
= GDDRS °
GDDR4 @ °e® NVLink 4.0
GDDR3 o I
R10000 ° - Nvink1o eSO
1 & 4 oo PCle 3.0
PCle 2.0
Pentium Il Xeon PCle 1.0a
e S it Il Rt I S AN SRS RS AN Y RIS AN ARSI RS AR R R AR IARS A RARS RAR) RAA AARS AR ASM.
1996 1999 2002 2005 2008 2011 2014 2017 2020 2023
YEAR

Fig. 1.2.: The history of performance scaling compared to bandwidth scaling of off-chip
memory and interconnect [Gho+24].

1.1

4

access speeds creates a performance bottleneck in computing systems. Hence, the
additional time for data access negatively impacts the overall system performance.
As analyzed throughout this thesis, the memory wall issue also extends to on-chip
memory, for example, in shared memory systems.

Several approaches are possible to overcome this issue. They can be divided into two
sections. First, enhance the technology of the physical memory and its interconnect.
Second, improve the memory subsystem itself to better balance the interactions
between the compute and memory systems. This approach comprises enhancements
to memory contention handling as well as workload-dependent advancements in
the alignment of compute and memory.

Contributions to State-of-the-Art and Related Work

As mentioned at the beginning, there is a wide range of DNN applications with dif-
ferent requirements that affect the memory interactions. Therefore, we concentrate
our analysis on two types of DNN applications, listed in Fig. 1.1. Access Interval Pre-
diction (AIP) and image processing are chosen to address both system optimization
and cognitive applications. As neural networks have not been applied to AIP yet,
we focus on training these models first and provide optimizations toward a model
execution in hardware. Whereas for image processing, we target only the hardware
for network inference as a wide range of neural models has already been trained.
Moreover, this thesis explores the DNN inference on a single hardware system. In the
future, our findings could be applied to individual hardware units within distributed
inference systems designed for applications with growing workloads. However,
such systems must also address additional challenges, such as merging intermediate
results and managing load balancing [PB24]. Finally, we focus on memory inter-
actions within on-chip memory, representing the highest interaction level between
the compute core and memory. These interactions either face a memory wall due to
limited effective bandwidth, as seen in interconnects in shared memory systems, or
mitigate the memory wall of off-chip memory by avoiding external memory transfers.
Future work could explore enhancements to the lower memory levels within the
memory subsystem to improve further the contributions made.

The contributions of this thesis are highlighted in Fig. 1.3. It shows an overview
of approaches within the literature that are applied to counteract the memory wall
[WM95] and reduce the gap between the performance of the memory and computing
system.

Chapter 1 Introduction

Optical
Interconnect

[Ver+19; Jac+09]

Conflict
Handling

Physical
Improvements

Contr: 1, Chap. 3, 4

)

Conventional

Access Interval
Prediction
Conflict
Avoidance

Model
Compression

[Wit+19¢; Raz+24]

[Tre+17]

Pruning

Quantization

Workload
Improvements [Pal+18; AL18] [Rak-+24]
Memory Subsystem [Liu+22b]
Improvements Transposed

Convolution

Contr. 2, Chap. 5
Dilated
Irregular ¢ .

Output
Stationary

‘Weight
towsi72

Row
Stationary

[CZs24]

Per-Layer Mixed-Precision Support

Sparsity
Support

|
I
I
|
I
[Wu+22; Im+20] :
I
|
I
|
I
I

[Yua+20]

Aligned Compute
and Memory Compute Core
Data Flows

" [CES16]
Data Locality

Contr. 3, Chap. 6

[Wu+22; Du+15]
Contr. 4, Chap. A

(Cinertaver)

[Alw+16; Xia+17)

Reduced

Memory
Hierarchy

| [RA19; Nab+20]
[BPB24]

Fig. 1.3.: Overview of approaches and related research to counteract the memory wall. The
four contributions of this thesis are put into context using this diagram.

Physical improvements contain several methods to improve the bandwidth of the
memory and interconnect and to reduce their access times. This helps to increase
the existing slope of the performance line in Fig. 1.2 for upcoming memory systems.
In the field of interconnects, an increase in bandwidth can be achieved by replacing
electrical with optical interconnects [Had+08; Lem+04]. For the memory cell itself,
In-Memory Computing (IMC) can be applied. As stated by its name, IMC executes
the computations directly within the memory, resulting in bandwidth and latency
benefits [Ver+19]. Furthermore, three-dimensional memory stacking decreases
the access latency of caches for high-speed compute systems [Jac+09]. However,
many of these technological improvements are not yet within large-scale production
and typically require costly and special production techniques. Therefore, this
thesis explicitly does not deal with technologies and concentrates on the upcoming

approaches to improve systems with conventional memories.

1.1 Contributions to State-of-the-Art and Related Work

6

Memory subsystem improvements aim at enhancing the interactions between the
compute and memory system. They can be divided into three subcategories.

Conflict handling deals with shared memory systems. As on-chip memory requires
a considerable amount of chip area, memory sharing among multiple masters is a
typical approach, especially for embedded systems. However, this technique can
result in access conflicts, which decrease the already limiting access speed to the
memory system. Within embedded systems, typically Tightly Coupled Memory
(TCM) is implemented due to its deterministic and fast access times. According
to previous work [Wit+19c], conventional conflict avoidance principles such as
[Tre+17] are not applicable due to timing constraints of TCM or are limited for
dynamic scheduled systems. Therefore, the conflicts further degrade compute perfor-
mance by reducing effective memory bandwidth. This is because data access latency
increases not only from unavoidable memory contention but also from the additional
delays required for conflict resolution. For example, to maintain the area-related
advantages of memory sharing, conventional online conflict resolution methods for
shared TCM, like [Rah+11], resolve the conflict in a single cycle but degrade the
system performance in terms of maximum clock frequency. Therefore, [Wit+19c]
suggested AIP for an offline conflict resolution to predict the occurrences of memory
accesses. This method enables fast memory arbitration and results in fast conflict
resolution by pre-allocation, which minimizes performance degradation compared to
online methods. As our first contribution, we introduce DNN-based predictors for
executing AIP, a novel approach not previously explored. By analyzing the dataset,
we demonstrate the feasibility of using neural networks for this task. Our trained
models achieve lower miss rates across various programs from the MiBench bench-
mark suite than conventional designs such as the TAgged GEometric history length
(TAGE) predictor [Raz+24]. Further, we expand the design space by cascading
multiple neural network models, applying model pruning and quantization, and
conducting a predictor latency analysis. As a result, system designers can define an
acceptable miss rate and select the model with the lowest compute cost that meets
the desired system execution time. Therefore, the memory wall issue, which affects
explicitly systems with online arbitration [Rah+11], can be alleviated by increasing
effective memory bandwidth through DNN-aided AIP and offline arbitration.

However, memory sharing and AIP are only partly applicable to DNN compute
cores. On the one hand, custom-designed DNN accelerators typically show regular
memory access patterns for their workloads. E.g., the cores in [Wu+22; CES16]
show deterministic and highly regular patterns when executing CNNs, a major
workload for DNN-based image processing. Hence, simple predictors like counters
or dedicated memory control units that leverage regular access patterns as described

Chapter 1 Introduction

in [BPB24], are sufficient and can be employed for AIP. On the other hand, memory
sharing is only possible for cores with a workload-dependent memory utilization
below 100 %. While this holds for CPUs, many DNN accelerators, Digital Signal
Processors (DSPs), and GPUs do not meet this condition. The DNN core in [Jou+17]
accesses its large 4 MiB memory every cycle. Therefore, we have to improve other
parts of the memory subsystem for DNN cores beyond conflict handling to counteract
the impact of the memory wall.

Workload improvements form an approach to reduce the amount and size of memory
interactions for DNN cores. The size of DNN models has been significantly enlarged
within the last few years. Not only the number of layers within a CNN has become
larger, but also new categories of large neural network models such as Transformers
have been introduced [Sze+15; Sch+20]. Therefore, several approaches have
been developed to decrease the model size for these networks containing a large
amount of model parameters. They range from weight encoding [Pal+18] to more
advanced methods like low-rank approximation of CNNs and increase of sparsity in
the attention layers of Transformers [Liu+22b]. However, even the classical model
compression techniques show promising results for DNNs [Jan+24]. The quanti-
zation can be reduced to 8 bit and below without a significant degradation of the
model accuracy [Rak+24]. The same applies to pruning, which omits unimportant
weights that have a low impact [CZS24; LM23] on the model’s output.

System alignment is the last subcategory and deals with improvements helping to
align better the performance of the compute and memory system. The compute core
has to support the advanced model compression techniques to take advantage of the
reduced memory interactions. The already mentioned pruning is one compression
method that typically results in irregular sparsity. However, the unpredictable po-
sitions of zero weights are difficult to handle for DNN accelerators, and dedicated
costly hardware modules are necessary. E.g., the indexing module in [Yua+20]
accounts for 18 % of the total power budget of the Processing Element (PE) array.
In contrast, regular sparsity, introduced by advanced convolutions such as Dilated
Convolution (DCONV) and Transposed Convolution (TCONV), is easier to process.
Without efficiently processing these DCONVSs, the corresponding layers are domi-
nated by unnecessary data transfers and computations on zero values. Moreover,
convolutions with different dilation rates are becoming more important in image pro-
cessing [Yur+20; Nog+19]. Several accelerators with efficient handling of DCONVs
have been introduced in the literature to target DNNs designed for flexible image
processing [Im+20; Wu+22]. Both designs integrate an additional level of on-chip
memory to avoid processing zero elements. The approach in [Im+20] employs shift
registers in each PE, while [Wu+22] uses a register stage to reorder values loaded

1.1 Contributions to State-of-the-Art and Related Work

8

from memory. However, their approaches are not universal and have limitations in
the supported dilation rates. For larger dilation rates, they face inefficiencies such as
extra zero transfers [Im+20] and additional latency [Wu+22]. The misalignment
between the memory system and the compute core causes a resurgence of the mem-
ory wall issue in the form of pending memory transfers. As a result, the memory
system again becomes a bottleneck, leading to increased computation time.

Additionally, the data locality and reuse within the compute core itself can be in-
creased to ease the load on the memory subsystem. Therefore, several data flows
have been introduced to keep loaded data stationary in the compute core. They can
be clustered in output [Du+15], weight [Jou+17], and row stationary [CES16].
However, the performance, e.g., in terms of required memory bandwidth, main
memory accesses, or energy, of each of them varies depending on the parameters
and dimensions of the executed DNNs [Gui+19]. Hence, for each data flow, it is
important to have a flexible interconnect to provide the required operands. How-
ever, efficient processing of the aforementioned DCONVs is a difficulty for all data
flows. Although handling DCONVs with fewer restrictions compared to the weight
stationary approach in [Im+20], the dilation rates of the output stationary design
in [Wu+22] are still limited. Therefore, our second contribution is an improved
output stationary DNN accelerator for handling DCONVs without restrictions. Apart
from limited dilation rates, the previously introduced DCONV cores are only designed
for fixed precision, causing the memory subsystem to process unnecessarily large
memory transfers. To take advantage of the workload improvements of quantized
models even for DCONVs, we propose a new memory mapping and a correspond-
ing address generation scheme. This regular, flexible scheme supports any set of
convolution parameters, including varying dilation rates. By leveraging our newly
developed load unit with strided data access, we eliminate unnecessary zeros in
DCONV processing. Additionally, our design efficiently supports operands with layer-
wise varying precision for any convolution type, including DCONV. Consequently,
we further reduce the memory transfer sizes compared to existing designs.

The data locality can be further increased by reducing the transfers within the mem-
ory hierarchy. When processing a dedicated layer, the data locality of a compute core
can be enlarged by applying additional memory stages. A sorting buffer [Wu+22] or
First-In First-Outs (FIFOs) between the PEs [Du+15] are implemented for their out-
put stationary designs. Our third contribution is the integration of two established
approaches within a DNN accelerator for the first time: an additional FIFO register
stage, initially used for accelerators targeting only standard convolutions [Du+15],
and load balancing for DCONVs [CC20a]. This combination is possible using our
address generation scheme with strided memory access, which can also be applied to

Chapter 1 Introduction

1.2

writing data. As a result, our design reduces the number of memory accesses to the
on-chip global memory for DCONVs, compared to the approach in [Wu+22]. Other
designs apply topologies like meshes [RA19] to communicate between PEs with local
memory. However, not having a direct path increases the latency between distant
PEs, which slows down the interconnect and worsens the impact of the memory wall
[Nab+20]. Another aspect is the dimensions of the memory hierarchy, which affects
the number of on- and off-chip memory transfers. A memory control unit utilizing
multiple levels of on-chip memory was introduced in [BPB24] to exploit regular
memory access patterns during DNN execution. While it has demonstrated potential
for optimizing weight memory, future work is needed to extend its application to
the memory storing the input data of the DNN layers. Moreover, by fusing multiple
layers of on-chip memory, off-chip transfers for intermediate data can be avoided and
replaced by on-chip transfers [Alw+16]. We introduce a framework to determine the
required number of fused-layers to reach local optima for required on-chip memory
sizes and data transfers. Its principle is based on a line buffer approach [Xia+17].
However, the original method is constrained to a specific temporal execution order
and is only applicable to accelerators with limited compute parallelism. For our
fourth contribution, we extend this approach to larger accelerators with multiple
execution orders and align it with our instruction set architecture.

Please refer to the related work sections in the following chapters for more detailed
insights, as this section offers only a brief overview of each research area.

Outline

The rest of the thesis is structured as follows.

Chapter 2 defines and describes the memory subsystem and its interactions. Based
on this, we introduce the system concept used throughout the thesis. Additionally,
the chapter covers the fundamentals of neural networks and analyzes the selected
software and hardware DNN applications, identifying their distinct requirements.

Chapter 3 uses this knowledge to introduce DNN-based AIP for conflict handling.
This represents the first contribution of this thesis. Through analysis of interval
distribution and access patterns, we demonstrate that this task can be modeled as
a multi-class time-series forecasting problem with offline training. As a result, we
develop a training framework for AIP to train and evaluate state-of-the-art DNNs,
comparing them to conventional predictors.

1.2 Outline

10

Chapter 4 further enhances this contribution by reducing the computational re-
sources required for neural network-aided AIP. We combine multiple small predic-
tors to reduce the number of calculations per cycle while maintaining the desired
execution time in a shared memory system with multiple PEs.

Chapter 5 describes the development of a new, regular, and universal instruction set
for DNN accelerators, focusing on CNN image processing. This second contribution
of the thesis proposes a design that efficiently supports per-layer mixed-precision
operands and DCONVs to avoid unnecessary data transfers. Furthermore, we
evaluate the benefits of our approach and integrate it into a comprehensive Systems
on Chip (SoC) for autonomous driving applications.

Chapter 6 and Appendix A introduce two strategies to reduce low-level memory
interactions. By applying minor adjustments to our instruction set, we can improve
data reusability for DCONVs and reduce on-chip memory accesses, forming the third
contribution of this thesis. Additionally, we extend the line buffer approach for layer
fusion to an additional dimension and analyze the number of fused-layers needed
to decrease the size of the on-chip memory in Appendix A, representing the fourth
contribution.

Finally, Chapter 7 summarizes the research and provides an outlook on future
work.

Chapter 1 Introduction

